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Abstract. Suppose that G = S
1 acts freely on a finitistic space X whose (mod p)

cohomology ring is isomorphic to that of a lens space L2m−1(p; q1, . . . , qm) or S
1 ×

CPm−1. The mod p index of the action is defined to be the largest integer n such
that αn �= 0, where α ε H2(X/G; Zp) is the nonzero characteristic class of the S

1-
bundle S

1 ↪→ X → X/G. We show that the mod p index of a free action of G on
S

1 × CPm−1 is p − 1, when it is defined. Using this, we obtain a Borsuk–Ulam type
theorem for a free G-action on S

1 × CPm−1. It is note worthy that the mod p index for
free G-actions on the cohomology lens space is not defined.
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1. Introduction

Let X be a topological space and G a topological group acting continuously on X . The set
x̂ = {gx |g ∈ G} is called the orbit of x . The set of all orbits x̂ , x ∈ X is denoted by X/G
and assigned the quotient topology induced by the natural projection π : X → X/G,
x → x̂ . An action of G on X is said to be free if g(x) = x , for any x ∈ X ⇒ g = e,
the identity element of G. The orbit space of a free transformation group (G, Sn), where
G is a finite group, has been studied extensively [2, 7, 8, 10, 15]. However, a little is
known if the total space X is a compact manifold other than a sphere [3, 6, 9, 14]. The
orbit space of a free involution on a real or complex projective space has been studied
in [13]. We have also determined the cohomology algebra of the orbit space of free actions
of Z p on a generalized lens space L2m−1(p; q1, q2, . . . , qm) in [12]. In this note, we
determine the mod p cohomology algebra of obrit spaces of free actions of circle group
S

1 on real projective space, lens space and S
1 ×CPm−1. Note that S

1 can not act freely on
a ‘finitistic’ space having integral cohomology of a finite-dimensional complex projective
space or a quaternionic projective space (Theorem 7.10 of Chapter III, [1]). We recall that
a paracompact Hausdorff space is finitistic if every open covering has a finite-dimensional
refinement.

Throughout this paper, H∗(X) will denote the Čech cohomology of the space X with
coefficients in a field F = Zp or Q (the field of rational numbers). It is known that
H∗(RPn; Z2) = Z2[a]/〈an+1〉, where deg a = 1, and H∗(L2m−1(p; q1, . . . , qm); Zp) =
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∧(a) ⊗ Zp[b]/〈bm〉, deg a = 1, β(a) = b, where β is the Bockstein homomorphism
associated with the coefficient sequence 0 → Zp → Zp2 → Zp → 0. By X ∼F Y , we
shall mean that H∗(X; F) and H∗(Y ; F) are isomorphic. We prove the following results.

Theorem 1.1. Let G = S
1 act freely on a finitistic space X ∼F S

1 × CPm−1, F = Zp

or Q. Then H∗(X/G; F) is

(i) F[z]/〈zm〉, deg z = 2.

(ii)
Zp[x, y1, y3, . . . , y2p−3, z]

〈x p, zn, xyq , yq yq ′ − Aqq ′ x
q+q′

2 − Bqq ′ zx
q+q′−2p

2 〉
, where m = np, deg x = 2,

deg yq = q, deg z = 2p, Aqq ′ = 0 when q + q ′ > 2p, Bqq ′ = 0 when q + q ′ < 2p
and both Aqq ′ and Bqq ′ are zero when q = q ′ or q + q ′ = 2p. If F = Q, then we
have only the case (i).

For free actions of circle group on a cohomology lens space, we have the following
theorem.

Theorem 1.2. Let G = S
1 act freely on a finitistic space X with mod p cohomology of

the lens space L2m−1(p; q1, q2, . . . , qm), p a prime. Then

H∗(X/G; Zp) = Zp[z]/〈zm〉, deg z = 2.

Let G = S
1 act freely on a space X . Then there is an orientable 1-sphere bundle S

1 ↪→
X

ν→ X/G, where ν denotes the orbit map. Let α ε H2(X/G; Z) be its characteristic
class. Jaworowski [4] has defined the (integral) index of a free S

1-action on the space
X to be the largest integer n (if it exists) such that αn �= 0. Similarly, one can define
mod p index of a free S

1-action on a space X . Jaworowski has shown that the (integral
or rational) S

1-index of L2m−1(p; q1, q2, . . . , qm) is m − 1. It follows from the Thom-
Gysin sequence for bundle S

1 ↪→ X → X/G that the characteristic class is zero for
X ∼p L2m−1(p; q1, q2, . . . , qm). So, the mod p index is not defined for a cohomology
lens space. We show that the mod p index of a free action of S

1 on a S
1 × CPm−1 is

p − 1, provided that characteristic class is nonzero. It should be noted that G = S
1 can

not act freely on X ∼2 RP2m .

2. Preliminaries

Let G = S
1 act on a paracompact Hausdorff space X . Then there is an associated fibration

X
i−→ XG

π−→ BG , where XG = (EG × X)/G and EG = S
∞ → BG = CP∞ are

universal G-bundles. It is known that BG is a CW-complex with 2N -skeleton CP N for
all N and EG is a CW-complex with 2N + 1-skeleton S

2N+1. Write E N
G = S

2N+1 and
B N

G = CP N . Then, Hi (E N
G ) = 0 for 0 < i < 2N + 1. Let X N

G = X ×G E N
G be the

associated bundle over B N
G with fibre X . Then the equivariant projection X × E N

G → X
induces the map φ : X N

G → X/G. Let G act freely on X . Then

φ∗ : Hi (X/G) → Hi (XG)

is an isomorphism for all i < 2N + 1 with coefficient group Zp, p a prime, by Vietoris–
Begle mapping theorem. By Hi (XG) we mean Hi (X N

G ), N large.
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To compute H∗(XG) we exploit the Leray–Serre spectral sequence of the map π :
XG → BG with coefficients in Zp, p being a prime. The edge homomorphisms

H p(BG) = E p,0
2 → E p,0

3 → · · · → E p,0
p+1 = E p,0∞ ⊆ H p(XG),

and

Hq(XG) → E0,q∞ = E0,q
q+1 ⊂ . . . ⊂ E0,q

2 = Hq(X)

are the homomorphisms

π∗ : H p(BG) → H p(XG) and i∗ : Hq(XG) → Hq(X),

respectively. We also recall the fact that the cup product in Er+1 is induced from that in
Er via the isomorphism Er+1 ∼= H∗(Er ). For the above facts, we refer to McCleary [5].

3. Proofs

To prove our theorems, we need the following:

PROPOSITION 3.1

Let G = S
1 act freely on a finitistic space X with Hi (X) = 0 for all i > n. Then

Hi (X/G) = 0 for all i ≥ n with coefficient group Zp, p being a prime.

Proof. We recall that the bundle S
1 ↪→ X

ν→ X/G is orientable, where ν : X → X/G is
the orbit map. Consider, the Thom–Gysin sequence

· · · → Hi (X/G)
ν∗−→ Hi (X)

λ∗−→ Hi−1(X/G)
μ∗

−→ Hi+1(X/G) → · · ·
of the bundle, where μ∗ is the multiplication by a characteristic class α ε H2(X/G). This

implies that Hi (X/G)
μ∗

−→ Hi+2(X/G) is an isomorphism for all i ≥ n. Since X is fini-
tistic, X/G is also finitistic [11]. Therefore, H∗(X/G) can be defined as the direct limit
of H∗(K (U)), where K (U) denotes the nerve of U and U runs over all finite dimensional
open coverings of X/G. Let β ε Hi (X/G) be arbitrary. Then, we find a finite dimensional
covering V of X/G and elements α′ ε H2(K (V)), β ′ ε Hi (K (V)) such that ρ(α′) = α and
ρ(β ′) = β where ρ : ∑

U Hi (K (U))−→Hi (X/G) is the canonical map. Consequently,
we have (α′)kβ ′ = 0 for 2k + i > dim V , which implies that (μ∗)k(β) = αkβ = 0. Thus
β = 0, and the proposition follows.

Now, we prove our main theorems.

Proof of Theorem 1.1. The case m = 1 is trivial. So we assume m > 1. Since G = S
1

acts freely on X , the Leray–Serre spectral sequence of the map π : XG → BG does not

collapse at the E2-term. As π1(BG) is trivial, the fibration X
i→ XG

π→ BG has a simple
system of local coefficients on BG . So the spectral sequence has

Ek,l
2

∼= Hk(BG) ⊗ Hl(X).
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Let a ∈ H1(X) and b ∈ H2(X) be generators of the cohomology ring H∗(X). Then
a2 = 0 and bm = 0. Consequently, we have either (d2(1 ⊗ a) = t ⊗ 1 and d2(1 ⊗ b) = 0)
or (d2(1 ⊗ a) = 0 and d2(1 ⊗ b) = t ⊗ a).

Case I. If d2(1 ⊗ a) = t ⊗ 1 and d2(1 ⊗ b) = 0, then

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism for k even and l odd and trivial homomorphism for the remaining
values of k and l. Obviously, Ek,l

3
∼= F for k = 0 and l = 0, 2, 4, . . . , 2m − 2. So

E∞ = E3. Therefore, we have

Ek,l∞ =
{

F, k = 0 and l = 0, 2, 4, . . . , 2m − 2

0, otherwise.

The element 1 ⊗ b ∈ E0,2
2 is a permanent cocycle and determines an element z ∈ E0,2∞ .

We have i∗(z) = b and zm = 0. Therefore, the total complex Tot E∗,∗∞ is the graded
commutative algebra

Tot E∗,∗∞ = F[z]/〈zm〉, deg z = 2.

It follows that

H∗(XG) = F[z]/〈zm〉, deg z = 2.

Case II. If d2(1⊗a) = 0 and d2(1⊗b) = t ⊗a, then we have d2(1⊗bq) = qt ⊗abq−1

and d2(1 ⊗ abq) = 0 for 1 ≤ q < m. So 0 = d2[(1 ⊗ bm−1) ∪ (1 ⊗ b)] = mt ⊗ abm−1.
This is clearly not true if F = Q. Now suppose that F = Zp. Then m = np for some
integer n > 0. The differential

d2 : Ek,l
2 → Ek+2,l−1

2

is an isomorphism if l is even and 2p does not divide l; and trivial homomorphism if l is
odd or 2p divides l. So Ek,l

3
∼= Ek,l

2
∼= Zp for even k and l = 2qp or 2(q + 1)p − 1,

0 ≤ q < n; k = 0, l is odd and 2p does not divide l; and Ek,l
3 = 0, otherwise. Clearly, all

the differentials d3, d4, . . . , d2p−1 are trivial. Obviously,

d2p : Ek,2qp
2p → Ek+2p,2(q−1)p+1

2p

are the trivial homomorphisms for q = 1, 2, . . . , n − 1. If

d2p : E0,2p−1
2p → E2p,0

2p

is also trivial, then

d2p : Ek,2qp−1
2p → Ek+2p,2(q−1)p

2p

is the trivial homomorphism for q = 2, . . . , n − 1, because every element of Ek,2qp−1
2p

(even k) can be written as the product of an element of Ek,2(q−1)p
2p by [1 ⊗ abp−1] ∈
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E0,2p−1
2p . It follows that dr = 0, ∀ r > 2p so that E∞ = E3. This contradicts the fact that

Hi (XG) = 0 for all i ≥ 2m − 1. Therefore,

d2p : E0,2p−1
2p → E2p,0

2p

must be non-trivial. Assume that d2p([1 ⊗ abp−1]) = [t p ⊗ 1]. Then

d2p : Ek,2qp−1
2p → Ek+2p,2(q−1)p

2p

is an isomorphism for all k and 1 ≤ q ≤ n. Now, it is clear that E∞ = E2p+1. Also,
Ek,l

2p+1
∼= Zp for ((even) k < 2p, l = 2qp, (0 ≤ q < n)) and (k = 0, l is odd and 2p does

not divide l). Thus

H j (XG) =
{

0, j = 2qp − 1(1 ≤ q ≤ n) or j > 2np − 2,

Zp, otherwise.

The elements 1 ⊗ bp ∈ E0,2p
2 and 1 ⊗ ab(h−1)/2 ∈ E0,h

2 , for h = 1, 3, . . . , 2p − 3 are

permanent cocycles. So they determine z ∈ E0,2p∞ and yq ∈ E0,q∞ , q = 1, 3, . . . , 2p − 3,
respectively. Obviously, i∗(z) = bp, zn = 0 and yq yq ′ = 0. Let x = π∗(t) ∈ E2,0∞ . Then
x p = 0. It follows that the total complex Tot E∗,∗∞ is the graded commutative algebra

Tot E∗,∗∞ = Zp[x, y1, y3, . . . , y2p−3, z]
〈x p, yq yq ′ , xyq , zn〉 ,

where q, q ′ = 1, 3, . . . , 2p − 3.

Then i∗(yq) = ab
(q−1)

2 , y2
q = 0 and yq y2p−q = 0. It follows that

H∗(XG) = Zp[x, y1, y3, . . . , y2p−3, z]
〈x p, zn, xyq , yq yq ′ − Aqq ′ x

q+q′
2 − Bqq ′ zx

q+q′−2p
2 〉

,

where m = np, Aqq ′ = 0 when q + q ′ > 2p, Bqq ′ = 0 when q + q ′ < 2p and both Aqq ′
and Bqq ′ are zero when q = q ′ or q + q ′ = 2p, deg x = 2, deg z = 2p, deg yq = q.

Since the action of G on X is free, the mod p cohomology rings of XG and X/G are
isomorphic. This completes the proof. �

Proof of Theorem 1.2. For prime p > 2, we proceed as in Theorem 1.1, and observe
that Case II can not occur here. In the Gysin cohomology sequence of the S

1-bundle

S
1 ↪→ X

ν−→ X/G, the homomorphism Hk(X/G)
ν∗−→ Hk(X) is an isomorphism for

k = 1, and trivial homorphism for k = 2. By the naturality of Bockstein homomorphism,
we see that β : H1(X) −→ H2(X) is trivial. In particular, we have b = β(a) = 0, a
contradiction.

For p = 2, X is mod 2 cohomology real projective space. Let a ∈ H1(X) be the
generator of the cohomology ring H∗(X). If d2(1 ⊗ a) = 0, then d2(1 ⊗ aq) = 0,
by the multiplicative structure of spectral sequence. It follows that the spectral sequence
degenerates and hence there are fixed points. Therefore, we must have d2(1 ⊗ a) = t ⊗ 1.
It is easily seen that

d2 : Ek,l
2 → Ek+2,l−1

2
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is an isomorphism for k even and l odd; and trivial homomorphism otherwise. So

Ek,l∞ ∼=
{

Z2, k = 0 and l = 0, 2, 4, . . . , 2m − 2,

0, otherwise.

It follows that H∗(XG) and Tot E∗,∗∞ are same as the graded commutative algebra. The
case m = 1 is obvious, so assume that m > 1.

The element 1 ⊗ a2 ∈ E0,2
2 is a permanent cocycle and determines an element z ∈

E0,2∞ = H2(XG). We have i∗(z) = a2 and zm = 0. Therefore, the total complex Tot E∗,∗∞
is the graded commutative algebra,

Tot E∗,∗∞ = Z2[z]/〈zm〉, where deg z = 2.

Thus H∗(XG) = Z2[z]/〈zm〉, where deg z = 2. This completes the proof. �

4. Examples

Consider the (2m − 1) sphere S
2m−1 ⊂ C × . . . × C (m times). The map (ξ1, . . . , ξm) →

(zξ1, . . . , zξm), where z ∈ S
1 defines a free action of G = S

1 on S
2m−1 with the orbit

space S
2m−1/S

1 the complex projective space. Let N = 〈z〉, where z = e2π i/p. Then
the orbit space S

2m−1/N is the lens space L2m−1(p; 1, . . . , 1) (resp. real projective space
RP2m−1 for p = 2). It follows that there is a free action of S

1 = G/N on a lens space
with the complex projective space as the orbit space. Thus we realize Theorem 1.2. For
Theorem 1.1, we have the diagonal action of G on S

1 × CPm−1 with the orbit space
CPm−1, where G acts freely on S

1 and trivially on CPm−1. This realizes the first case of
the theorem.

5. A Borsuk–Ulam type theorem for free G-actions on SS
1 × CCPm−1

First, we find the mod p index of a free action of G on S
1 × CPm−1.

Theorem 5.1. Let G = S
1 act freely on a finitistic space X ∼p S

1 × CPm−1, p being
a prime. Then either the characteristic class of the bundle S

1 ↪→ X → X/G is zero, or
mod p index of X is p − 1.

Proof. The Gysin sequence of the bundle S
1 ↪→ X → X/G begins with

0 → H1(X/G; Zp)
ν∗→ H1(X; Zp) → H0(X/G; Zp)

ψ∗
→ H2(X/G; Zp)

ν∗→ · · · .

The characteristic class of the bundle is defined to be the element ψ∗(1) ∈ H2(X/G; Zp),
where 1 is the unity of H0(X/G; Zp). In Theorem 1.1(i), the characteristic class of the
bundle S

1 ↪→ X → X/G is zero. In Theorem 1.1(ii), Hi (X/G; Zp) ∼= Zp for i < 2p−1.
Also, we have Hi (X; Zp) ∼= Zp for i ≤ 2m − 1. Thus, we have the following exact
sequence:

0 → Zp
ν∗→ Zp → Zp

ψ∗
→ Zp

ν∗→ Zp → · · ·
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Clearly, the map

ψ∗ : H0(X/G; Zp) → H2(X/G; Zp)

is an isomorphism. So, the characteristic class α = ψ∗(1) ∈ H2(X/G; Zp) is nonzero.
By Theorem 1.1, α p = 0 but α p−1 �= 0. Thus, mod p index of X is p − 1. �

If η → X is a real vector bundle, we write wi (η) to denote its i-th Stiefel–Whitney
classes. We have the following results.

Theorem 5.2. Let X be a finitistic space whose mod p cohomology isomorphic to
S

1 × CPm−1, p being a prime. Suppose X is equipped with an arbitrary free S
1-action,

and S
2m+1 is equipped with the standard (complex multiplication) S

1-action. In case,
the characteristic class of the bundle S

1 ↪→ X → X/S
1 is nonzero, then there is no

equivariant map S
2m+1 → X if m ≥ p.

Proof. Suppose, on the contrary, there exists a S
1-equivariant map f : S

2m+1 → X , and
let f̄ : S

2m+1/S
1 = CPm → X/S

1 be the map induced by f . Write λ → X/S
1 for the

complex line bundle associated to the free S
1-action on X . In this case, the total space of

λ is the orbit space of X × C by the diagonal action of S
1, coming from the free action of

S
1 on X and the complex multiplication on C; in the subsequent approach, λ will be con-

sidered as a 2-dimensional real vector bundle. Denote by ξ → BS1 = CP∞ the universal
complex line bundle and by ξ ′ → CPm its restriction to CPm , both also considered as
the 2-dimensional real vector bundles. In Theorem 1.1(i), x ∈ H2(X/S

1; Zp) is the image
of t under

π∗ : H2(CP∞; Zp) → H2(X/S
1; Zp),

since also in this case π is a classifying map for λ → X/S
1, this gives that x = π∗(t) =

π∗(w2(ξ)) = w2(λ). Again, because f is equivariant, ξ ′ → CPm is the pullback of
λ by f̄ , and so naturality gives f̄ ∗(w2(λ)) = w2(ξ

′) = t ′ ∈ H2(CPm; Zp), t ′ the
generator of H2(CPm; Zp). In Theorem 1.1(ii), the characteristic class of the bundle is
nonzero, and x p = 0. Thus, 0 = f̄ ∗(x p) = t ′ p. However, because m ≥ p, and thus
t ′ p ∈ H2p(CPm; Zp) is nonzero. This gives the desired contradiction. �

We remark that the mod p index of a lens space L2m−1(p; q1, q2, . . . , qm), where p a
prime, is not defined. In fact, the characteristic class of the bundle S

1 ↪→ X
ν→ X/G,

where X ∼p L2m−1(p; q1, q2, . . . , qm), is zero. By Theorem 1.2, H1(X/G; Zp) = 0 and
H0(X/G; Zp) = H2(X/G; Zp) ∼= Zp. The Gysin sequence of the bundle S

1 ↪→ X →
X/G reduces to the exact sequence,

0 → 0
ν∗→ Zp → Zp

ψ∗
→ Zp

ν∗→ Zp → · · ·
It is now immediate that

ψ∗ : H0(X/G; Zp) → H2(X/G; Zp)

is trivial homomorphism. Therefore, the characteristic class of the bundle S
1 ↪→ X →

X/G is zero.
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