Proceedings Mathematical Sciences | |
Gromov Hyperbolicity in Cartesian Product Graphs | |
MarÃa Villeta1  José M Sigarreta3  Junior Michel2  José M RodrÃguez4  | |
[1] $$;Departamento de Matemáticas, Universidad Carlos III de Madrid, Av. de la Universidad 0, Leganés, Madrid, Spain$$;Departamento de EstadÃstica e Investigación Operativa III, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n., 00 Madrid, Spain$$;Facultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame , Col. La Garita, Acapulco, Guerrero, México$$ | |
关键词: Infinite graphs; Cartesian product graphs; connectivity; geodesics; Gromov hyperbolicity.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
If ð‘‹ is a geodesic metric space and $x_1,x_2,x_3in X$, a geodesic triangle $T={x_1,x_2,x_3}$ is the union of the three geodesics $[x_1x_2], [x_2x_3]$ and $[x_3x_1]$ in ð‘‹. The space ð‘‹ is ð›¿-hyperbolic (in the Gromov sense) if any side of 𑇠is contained in a ð›¿-neighborhood of the union of the two other sides, for every geodesic triangle 𑇠in ð‘‹. If ð‘‹ is hyperbolic, we denote by ð›¿(ð‘‹) the sharp hyperbolicity constant of ð‘‹, i.e. $ð›¿(X)=inf{ð›¿â‰¥ 0:X, ext{is}ð›¿-ext{hyperbolic}}$. In this paper we characterize the product graphs ðº1 × ðº2 which are hyperbolic, in terms of ðº1 and ðº2: the product graph ðº1 × ðº2 is hyperbolic if and only if ðº1 is hyperbolic and ðº2 is bounded or ðº2 is hyperbolic and ðº1 is bounded. We also prove some sharp relations between the hyperbolicity constant of $ðº1 × ðº2,ð›¿(ðº1),ð›¿(ðº2) and the diameters of ðº1 and ðº2 (and we find families of graphs for which the inequalities are attained). Furthermore, we obtain the precise value of the hyperbolicity constant for many product graphs.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506920ZK.pdf | 357KB | download |