期刊论文详细信息
Proceedings Mathematical Sciences | |
Power Cocentralizing Generalized Derivations on Prime Rings | |
Vincenzo De Filippis1  | |
[1] DI.S.I.A., Faculty of Engineering, University of Messina, Messina, Italy$$ | |
关键词: Prime rings; differential identities; generalized derivations.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let ð‘… be a prime ring, 𑈠the Utumi quotient ring of $R,C=Z(U)$ the extended centroid of ð‘…,ð¿ a non-central Lie ideal of ð‘…,ð» and ðº non-zero generalized derivations of ð‘…. Suppose that there exists an integer $n≥ 1$ such that $(H(u)u-uG(u))^n=0$, for all $uin L$, then one of the following holds: (1) there exists $cin U$ such that $H(x)=xc,G(x)=cx;(2)R$ satisfies the standard identity $s_4$ and char (ð‘…)=2; (3) ð‘… satisfies $s4$ and there exist $a, b, cin U$, such that $H(x)=ax+xc,G(x)=cx+xb$ and $(a-b)^n=0$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506897ZK.pdf | 138KB | download |