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Abstract. Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the
extended centroid of R, L a non-central Lie ideal of R, H and G non-zero genera-
lized derivations of R. Suppose that there exists an integer n > 1 such that (H (u)u —
uG(u))" =0, forall u € L, then one of the following holds: (1) there exists ¢ € U such
that H(x) = xc, G(x) = cx; (2) R satisfies the standard identity s, and char(R) = 2;
(3) R satisfies s4 and there exista, b, ¢ € U, suchthat H(x) = ax+xc,G(x) = cx+xb
and (a — b)" = 0.
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1. Introduction

Let R be a prime ring with center Z(R) and extended centroid C. Many results in literature
indicate that the global structure of a ring R is often tightly connected to the behaviour
of additive mappings defined on R. A well-known result of Posner [13] states that if d
is a derivation of R such that [d(x), x] € Z(R), for any x € R, then either d = 0 or
R is commutative. Later in [2], Bresar proves that if d and § are derivations of R such
that d(x)x — x8(x) € Z(R), for all x € R, then either d = § = 0 or R is commutative.
In [9], Lee and Wong extended the Bresar’s result to the Lie case. They prove that if
d(x)x—x6(x) € Z(R), forall x in some non-central Lie ideal L of R then eitherd = § = 0
or R satisfies s4, the standard identity of degree 4. These facts in a prime ring are natural
tests which evidence that the set {d (u)u — ud(u), u € L} is rather large in R.

Here we will consider the same situation in case the derivations d and § are replaced
respectively by the generalized derivations H and G. More specifically an additive map
G: R — R is said to be a generalized derivation if there is a derivation d of R such
that, forall x, y € R, G(xy) = G(x)y + xd(y). A significative example is a map of the
form G(x) = ax + xb, for some a, b € R; such generalized derivations are called inner.
Generalized derivations have been primarily studied on operator algebras. Therefore any
investigation from the algebraic point of view might be interesting (see for example [10]).
Here our purpose is to prove the following theorem:

Theorem. Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended
centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations
of R. Suppose that there exists an integer n > 1 such that (H(u)u — uG (u))" = 0, for all
u € L, then one of the following holds:
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(1) there exists ¢ € U such that H(x) = xc, G(x) = cx;

(2) R satisfies the standard identity s4 and char(R) = 2;

(3) R satisfies s4 and there exist a,b,c € U, o € C such that H(x) = ax + xc,
G(x) =cx+xband (a—b)* =0.

Before starting the proofs, we fix some well-known facts. In what follows let R be a
non commutative prime ring, U its Utumi quotient ring and C = Z(U) the center of U.
We refer the reader to [1] for the definitions and the related properties of these objects.
Moreover we denote by s4 the standard polynomial in four non-commuting variables.
In particular we make use of the following:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfies the same generalized
polynomial identities with coefficients in U [3].

Fact 2. Every derivation d of R can be uniquely extended to a derivation of U (see
Proposition 2.5.1 in [1]).

Fact 3. We denote by Der(U) the set of all derivations on U. By a derivation word we
mean an additive map A of the form A = did;...d,,, with each d; € Der(U). Then
a differential polynomial is a generalized polynomial, with coefficents in U of the form
@ (% x;) involving noncommutative indeterminates x; on which the derivations words Aj
act as unary operations. The differential polynomial @ (“/x;) is said to be a differential
identity on a subset T of U if it vanishes for any assignment of values from T to its
indeterminates x;.

Let Djy be the C-subspace of Der(U) consisting of all inner derivations on U and let d
be a non-zero derivation on R. By Theorem 2 in [7] we have the following result (see also
Theorem 1in [11]): If ®(xyq, ..., x,, dxl, R dxn) is a differential identity on R, then one
of the following holds:

(1) either d € Djy;
(2) or R satisfies the generalized polynomial identity ® (xq, ..., Xs, Y1, -+, Yn)-

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfies the same differential
identities [11].

We refer the reader to Chapter 7 in [1] for a complete and detailed description of the
theory of generalized polynomial identities involving derivations.

Fact 5. If one assumes that either R does not satisfy s4 or char(R) # 2, then there exists
a non-zero two-sided ideal I of R such that O # [/, R] € L. In particular, if R is a simple
ring it follows that [R, R] € L.

This follows from pp. 4-5 in [6], Lemma 2 and Proposition 1 in [4] and Theorem 4 in [8].

2. The case of inner generalized derivations on prime rings

We dedicate this section to prove the theorem in case both the generalized derivations
H and G are inner, that is there exist b, ¢, p,q € U such that H(x) = bx + xc and
G(x) = px +xq,forall x € R.
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In all that follows we suppose that if R satisfies s4 then char(R) # 2. In light of
Fact 5 there exists a non-central ideal I of R such that [/, I] € L. This implies that
(blr1, 21 + [r1, r21(c — plri, r2] — [r1, r2]2q)” = 0 for all r1,r, € I. Moreover by
Fact 1, I and R satisfy the same generalized polynomial identities, thus (b[r, 12 41r1, 2]
(c— p)lr1, r2] —[r1, r2]2q)” = Oforall r;, r, € R. Hence we assume that R satisfies the
following generalized polynomial identity

P(x1, x2) = (blx1, x2) + [x1, x21(c — p)lx1, x2] — [x1, x:21°¢)"

and P(x1,x2) is a generalized polynomial in the free product U x¢c C{xy, x2} of the
C-algebra U and the free C-algebra C{x1, x2} .
We first prove the following:

Lemma 1. If R does not satisfy any non trivial generalized polynomial identity then
qg.beCandb+c=p+gq.

Proof. Let T = U xc C{X} be the free product over C of the C-algebra U and the free
C-algebra C{X}, with X the set consisting of non-commuting indeterminates x1, x2.

For brevity, we write P (X) instead of P(x1, x2) and f(X) instead of [x1, x2].

Now consider the generalized polynomial P(X) € U *c C{X}. By our hypothesis, R
does not satisfy any non-trivial generalized polynomial identity and

P(X) = bf X)X (bf (X)* + f(X)(c— p)f(X) — f(X)?q)" !
+(fXO = pfX) = fFX) ) bf (X)?
+fX)e—pfX)— fX)Pg" ' =0eT.
Suppose that {b, 1} are linearly C-independent. By [3], it follows that
bf(X)*(bf (X)* + f(X)(c—p)f(X) = f(X)’q)" "' =0eT
which means, again since R is not a GPI-ring,
(bf (X)* + f(X)(c—p)f(X)— fFX))" ' =0€eT.
Continuing this process we get
(Bf X+ fX)(e—p fX)— f(X)Pq)=0€eT

and this implies f(X )2 =0 € T, since {b, 1} are linearly C-independent. Of course this
is a contradiction. Therefore {b, 1} must be linearly C-dependent, thatis b € C. A similar
argument shows that suppose {g, 1} are linearly C-independent, then

bf (X)?+f(X) (e — p) fF(X)— FX)2Q)" " bf (X)* + f(X)(c — p) f(X))
+ BfFX)*+ FX)(e—pfFX) — FXD2" N =f(X)?q)=0€eT

and as a consequence
BFX)*+ fX)e—pfFX) — fFXO* " N =f(X)?q)=0€T.

As above (bf (X)? + f(X)(c — p)f(X) — f(X)?>¢)""' = 0 € T and continuing the
process we finally have (bf (X)% + f(X)(c — p) f(X) — f(X)*>q) = 0 € T, which again
implies the contradiction f(X)?> =0 e T. Therefore ¢ € C, as b does. Hence R satisfies
fX)b—qg+c—p)f(X)" =0 e T, which is a trivial generalized polynomial identity
only in the case b — g 4+ ¢ — p = 0, as required. |
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Lemma 2. Let R be a dense ring of linear transformations over a vector space V over the
field C.

(1) Ifdimc(V) >3 thenb,q e Candb+c=p+q;
(2) Ifdim¢ (V) = 2 then either char(R) =2 orc—p=a € Cand (b — g+ a)" =0.

Proof.

(1) Letdimc (V) > 3.

Our first aim is to show that for any v € V, v and vb are linearly C-dependent.
By contradiction let v, vb be C-independent. There exists w € V such that v, vb, w are
linearly independent. By the density of R, there exist x, y € R such that

vx = 0,vy = w, vbx =v,vby =0, wx =0, wy = —vb.
By calculation we obtain:

v[x, y] =0, vb[x, y] = w, wlx, y] = v.
Then

0 = v(blx, yI* + [x, ylc = p)lx, y] =[x, yPPg)" = v #0

a contradiction. Thus {v, vb} are linearly C-dependent, for all v € V. In this case it is
well-known that b € C. Hence R satisfies

(Lx1, x21(c — p)lx1, x2] + [x1, x21° (b — g))".

Now suppose there exists v € V such that {v, v(c — p)} are linearly C-independent. Also
in this case there exists w € V such that v, v(c — p), w are linearly independent. By the
density of R, there exist x, y € R such that

vx =0,vy =w,v(c— p)x=v,v(c — p)y=0, wx =0, wy = —v(c — p).
By calculation we obtain:

vlx, y] =0,v(c — p)lx, yl = w, wlx, y] = v.
Then

0= w(lx, yltc = p)lx, 1+ [x, yPP(b = 9))" = w #0,

a contradiction. Thus {v, v(c — p)} are linearly C-dependent for all v € V, and this means
that ¢ — p € C. Therefore R satisfies ([x1, x2]°(c — p + b — ¢))". Finally assume that
there exists v € V such that {v, v(c — p + b — q)} are linearly C-independent. Let w € V
such that v, v(c — p + b — q), w are linearly independent. By the density of R, there exist
X,y € R such that

vx =v,vy=w,v(c—p+b—qg)x=v,v(c—p+b—q)y=0,
wx =0,wy =—v(c—p+b—q).
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Then
vx,yl=w, vic—-p+b—qlx,yl=w, wlx,yl=v

and
0=v(x,yP(c—p+b—q)' =vic—p+b—gq) #0

a contradiction. It follows that (c — p + b — q) € C and g € C. So R satisfies [x1, x]*
(c—p+b—gq)* thatis (c — p+b —q) = 0, since R cannot be commutative in this case.

(2) Letdimp (V) = 2.

In this case U = M»(C), the ring of 2 x 2 matrices over C. In particular the polynomial
[x1, x2]? is central-valued on U, as in M>(C). Hence U satisfies ([x], x2]*(b — q) +
[x1, x2](c — p)[x1, x2])". Of course if char(R) = 2 we are done. Thus we assume that
char(R) # 2.

Here we denote A = b — g = ) ajjejj, B=c— p = bjje;j, where ¢;; is the usual
matrix unit with 1 in the (i, j) entry and zero elsewhere, and any a;;, b;; is an element of C.

Since the matrix M = [x1, x2]*(b — q) + [x1, x2](c — p)[x1, x2] is nilpotent in M>(C),
it is not invertible and its determinant is zero. We use this condition a number of times to
prove our result in this case.

For [x1, x2] = [e12 + €21, e22] = e12 — ep1 we have

—ayy — by —ap+b
M- 11— bn 12 + b2
—az; +b1x —ax — by

and
0 =det(M) = (a11 + ba)(ax + b11) — (b21 — a12)(b12 — az1). (D

Again for [x1, x2] = [e12 — €21, e22] = e12 + e21 we have

ail +bxy ap+b
- | 22 aip + by )
az1 + b1z axn + by

and
0 = det(M) = (a1 + ba)(az2 + b11) — (b1 + a12)(biz + az1). 3)
By (1) and (3) we get 2(a12b12 + a21b21) = 0 and since char(R) # 2 it follows that
ainbiz + azbz = 0. “)
Let [x1, x2] = [e12 + 2e321, —e22] = —ej2 + 2e21. Hence

M- —2a11 — 2by —2aiz + by
| —2ay +4byy —2ax — 2by;

and by calculation

0 =det(M) = 2(a11 + bao)(az + b11) + 2aiz — b21)(2b12 — az1). (5)
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By replacing (3) in (5) and using (4) we have
bia(ay — b21) = 0. (6)

Our aim is to prove that either b1» = 0 or b>; = 0. To do this, we suppose that both b1> # 0
and b1 # 0 and we will prove that this assumption leads to a contradiction.

By (6) we get ajp = by). By using this last in (4) it follows that by (b12 + a21) = 0,
that is b2 = —ap1. In light of this, the matrix in (2) is

ajl+b 2b
Mo | et 21
0 axn + by

and since it is nilpotent it follows that (a1 + b22)" = (a2 +b11)" = 0, thatisaj; + by =
ax) + b1 = 0. Therefore, if both b1 and by are not zero, then

ai2 —by1 =0, ax+bip=0, ayn+byp=0, axn+b;=0. (N

Leto(x) = (1 +e12)x(1 —eq2) and x(x) = (1 —e12)x(1 + e12) be inner automorphisms
of R. Of course

9(([x1, 21 (b — ) + [x1, x2](c — p)[x1, x2])") =0
and

x((x1, 226 = @) + [x1, 22 (e — p)lxt, x2)™) =0
that is, the matrices ¢(A), ¢(B), x(A), x(B) satisfy the same properties of A and B.
Denote by ¢(A);; the (i, j)-entry of ¢(A), ¢(B);; the (i, j)-entry of ¢(b), x(A);; the

(i, j)-entry of x(A) and y (B);; the (i, j)-entry of x (B).
Therefore ¢ (B)21 = ¢(A)12 and by (7) it follows that

aiy = by = @(B)21 = ¢(A)12 = aiz +axn —ai — a
that is,

axp —ayp —az =0. (3)
On the other hand, x (B)21 = x (A)12 and by (7) it follows that

aiz = by = x(B)21 = x(A)12 = a1z — ax +an —az,
that is,

—axn +air —azy =0. 9)
By (8) and (9) and since char(R) # 2, we get the contradiction b, = —as; = 0.

This argument proves that one of bj» and by must be zero. Without loss of generality
we may assume that b1 = 0. As above, consider the following inner automorphisms of R:

p(x) = (1 +ep)x( —e) and x(x) =1 —ep)x(1+e12).
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Ifeither 0 = @(B)21 = by1 or 0 = x(B)21 = ba1 then B is a diagonal matrix. On the other
hand, if both ¢(B)21 = bp1 # 0 and x (B)21 = by # 0, then by the previous argument
we have that ¢(B)12 = 0 and also x (B)12 = 0. By calculation one has

0=9(B)12 =bx —bi1 — by
and
0= x(B)i12 = —bxn+b11 — by

and the last two equalities imply b>; = 0, since char(R) # 2. Thus we may conclude
that in any case B must be a diagonal matrix in M>(C). Using this, we may repeat
the same above argument and consider the matrix ¢ (B): it must be a diagonal one.
Hence 0 = ¢(B)12 = byy — b1, which implies b1 = byy = « € C. Therefore, if we
denote by /5 the identity matrix in M>(C), we have that B = « - I is a central matrix in
M>(C). Therefore R satisfies ([x, ]k — q + @))" = 0 and since [x1, x2]? is central-
valued on M, (C), it follows that (b — g + )" = 0 as required. O

PROPOSITION 1

Let R be a prime ring, and b, c, p, q elements of U such that (b[r1, 12+ [r1, r21(c — D)
[r1, 2] — [r1, rg]zq)” = 0 forall r1,ry € R. Then one of the following holds:

(1) bge Candb+c=p+gq;
(2) R satisfies s4 and char(R) = 2;
(3) R satisfies s4,c—p=a € Cand(b—qg+a)' =0.

Proof. By Lemma | we may assume that R satisfies the non-trivial generalized polynomial
identity

P(x1, x2) = (bx1, x21* + [x1, x21(c — p)lx1, x2] — [x1, x21%9)".

Since U and R satisfy the same generalized polynomial identities with coefficients in U
(see Fact 1), then P (x1, x7) is also a generalized identity for U. Hence we may now suppose
that U satisfies some non-trivial generalized polynomial identity. By [12] U is primitive
having a non-zero Socle Soc(U) with C as the associated division ring and by Jacobson’s
theorem (p. 75 in [5]) U is isomorphic to a dense ring of linear transformations of some
vector space V over C. Thus we may conclude by Lemma 2. O

3. The general case on prime rings

We consider now the more general situation and prove the main theorem of the paper. Let
L be a non-central Lie ideal of R, H and G non-zero generalized derivations of R and
suppose that there exists an integer n > 1 such that (H (u)u —uG(u))" =0, forallu € L.

We suppose that if R satisfies s4 then char(R) # 2. Therefore, as in §1, by Fact 5 we
may assume that there exists a non-zero ideal I of R such that

(H([r1, r2DIr1, r2] = [r1, 121G ([r1, r21))" =0

for all 1, r» € I. Under these assumptions we have the following.
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Theorem 1. One of the following holds:

(1) there exists ¢ € U such that H(x) = xc, G(x) = cx;

(2) R satisfies the standard identity s4 and char(R) = 2;

(3) R satisfies s4 and there exist a’,b', ¢’ € U, such that H(x) = a'x + xc/, G(x) =
x4+ xb' and (@’ — b)) = 0.

Proof. By Theorem 3 in [10] every generalized derivation g on a dense right ideal of
R can be uniquely extended to the Utumi quotient ring U of R, and thus we can think
of any generalized derivation of R to be defined on the whole U and to be of the form
g(x) = bx + d(x) for some b € U and d a derivation on U. Thus we may assume that
there exist a, b € U and d, § derivations on U such that

H(x) =ax+d(x) and G(x)=bx+§x).

Since I, R and U satisfy the same differential identities [11], without loss of generality,
in order to prove our results we may assume that

(H([r1, r2D)[r1, r2] = [r1, 121G ([r1, r2)" = 0
for all r1, r» € U. Hence U satisfies
((alxr, x2] 4+ d([x1, x21)[x1, x2] = [x1, x2](blx1, x2] + 8([x1, x21)",
that is,
((alxy, x2] + [d(x1), x2] + [x1, d(x2) D[x1, x2]
— [x1, x2](blxr, x2] + [8(x1), x2] + [x1, 8(x2)D)". (10)

Case 1. Let d be the inner derivation induced by ¢ € U and § the inner one induced
by g € U, thatis d(x) = [c,x] and §(x) = [q, x], so that H(x) = ax + [c, x] and
G(x) = bx + [g, x]. In this last case, again by Fact 3 and (10), U satisfies

(@ +O)lxt, 22l = [x1, 22](c + b+ @lxr, w2l + [x1, 22 1%9)". (1D
By Lemma 1 and Proposition 1 we have:

e cithera +c¢,q € C,witha +c+q = c + b + g, thatis a = b (in this case we obtain
the conclusion H(x) = xa and G(x) = ax),
e orU = M(C),c+b+q =« € C and by (14) it follows that U satisfies

((a — b)[x1, x2])".

Since [x1, x2]? is central valued on U, we have that (a —b)" =0, that is, (a — a+
¢ +¢)" = 0.1In this case we have the conclusion H (x) = a’x +xc’, G(x) = ¢’x + xq’,
wherea' =a+c,c’ = —c,qg =a —qand (a’ — ¢")" =0.

Case 2. Let d and § be C-linearly independent modulo Djy. In this case, by Fact 3 and
(10), U satisfies the generalized polynomial identity
((alx1, x2] + [x3, x2] + [x1, x4D[x1, x2]

— [x1, x2](b[x1, x2] + [x5, x2] + [x1, x6]))", (12)

]2

in particular, U satisfies the blended component (a[xi, x2]° — [x1, x2]b[x1, x2])".

By Lemma 1 and Proposition 1, we have two subcases.
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e eithera = b € C, then by (12) we have
(([x3, x2] + [x1, xa])[x1, x21 — [x1, x2]1([x5, X2] + [x1, x61))" =0

and for x3 = x5 = x¢ = 0, xp = x4 we also have [x1, xz]z" = 0 which implies that U
1S commutative, a contradiction,
e or U = M>(C) and b € C. In this last case, by (12) we have

((a — b)[x1, x21% + [x3, x2llx1, x2] + [x1, x4][x1, x2]

— [x1, x21[xs5, x2] — [x1, x2][x1, x6])" =0

and for x; = eq1, X = xg = e, X3 = €31, X4 = x5 = e1; we have the contradiction
ey = 0.

Case 3. Let now ad + B8 = ad(p), the inner derivation induced by the element p € U.

In case « = O then 8§ = ad(q) is the inner derivation induced by the element g = g~! p.
In the light of Case 1, we may assume that d is not an inner derivation of U. In this case,
by Fact 3 and (10), U satisfies the generalized polynomial identity

((alx1, x2] + [x3, x2] + [x1, x4 [x1, x2]
— [x1, x2](b[x1, x2] + glx1, x21 — [x1, x21¢))", (13)

in particular, U satisfies the blended component (a[x, )% = [x1, x21(b + Qlx1, x2] +
[x1, xg]zq)”. By Lemma 1 and Proposition 1, we have two subcases:

e ecithera,q € C,witha+qg = b+ g, thatisa = b € C. In this case by (13) U satisfies
(([x2, x3] + [x1, xa])[x1, x2])", that is U is a PI-ring. Hence there exists a suitable field
K such that U and the matrix ring M, (K) satisfies the same polynomial identities. For
t > 2and x; = ey, x = eq2, x3 = e and x4 = ep;, we have the contradiction
(—ex)" = 0.

e or U = M(C), b+ g € C and by (13) it follows that

(alx1, x21% + [x3, x21lx1, x2] 4 [x1, xal[x1, X2] — [x1, X21°6)" = 0

and for x; = ez, x2 = e, x3 = €21 and x4 = ez, we have again the contradiction
(—ex)" = 0.

On the other hand, if 8 = 0, then d = ad(c) is the inner derivation induced by the element
¢ = o~ !'p and again by Case 1 we may assume that § is not an inner derivation of U.
Hence by Fact 3 and (10), U satisfies

((alx1, x2] + clx1, x2] = [x1, x2]0)[x1, x2]
— [x1, x21(b[x1, x21 + [x3, x2] + [x1, x4]))". (14)
By Lemma 1 and Proposition 1, we have

e eithera+c = b+c € C,witha = b.Inthis case by (14) U satisfies (—[x1, x2][x3, x2]—
[x1, x2][x1, x4])", that is U is a PI-ring. Hence there exists a suitable field K such that
U and the matrix ring M,(K) satisfies the same polynomial identities. For r > 2 and
X1 = eq1, X2 = e12, x3 = e1 and x4 = ey, we have the contradiction (ez)"” = 0,
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e or U = My(C), b+ ¢ € C and by (14) it follows as above (—[x1, x2][x3, x2] —
[x1, x2][x1, x4])" = 0 and we get again a contradiction.

Hence we now consider the case whenboth« # Oand § # 0. Therefore § = yd+ad(q),
for y = —af~! # 0 and ad(q) is the inner derivation induced by ¢ = B~ p. Moreover
by Case 1 we again may assume that d is not an inner derivation in U. By Fact 3 and (10),
U satisfies

((alx1, x2] + [d(x1), x2] + [x1, d(x2)D[x1, x2] — [x1, x2](b[x1, x2]
+ yld(x1), x21 + y[x1, d(x2)]1 + g, [x1, x211))"

and so U satisfies the generalized polynomial identity

(Galxt, x2]1 + [y1, x2] + [x1, y2D[x1, x2] — [x1, x21(b[x1, x2]
+ vy, x21 + yx1, y21 + [g, [x1. x2]1]))",

in particular, U satisfies the blended component ([yy, x2][x1, x2] — v [x1, x2][y1, x2])".
For y; = x1, U satisfies (1 — y)"[x1, x2]%". This means that either [x1, x2]*" is an identity
for R, or y = 1. In the first case it is easy to see that U is commutative. In the second one,
U satisfies the polynomial identity

Iy, x210x1, x2] — [x1, x21[y1, 221" (15)

As above, since U is a PI-ring, there exists a suitable field K such that U and the matrix ring
M;(K) satisfies the same polynomial identities. For ¢t > 2 and y; = e12 — e21, X1 = €12,
X2 = ep in (15), we have the contradiction (epy — 811)2" = 0. Hence t = 1 and R must
be commutative. O

As a reduction of the previous Theorem, we may also prove the following:

Theorem 2. Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C = Z(U) the extended centroid of R, H and G non-zero generalized deriva-
tions of R. Suppose that there exists an integer n > 1 such that (H (x)x — xG(x))" =0,
for all x € R, then either R is commutative and H = G or there exists ¢’ € U such that
H(x) =xc, G(x) =x.

Proof. Suppose first that R is not commutative. By Theorem 1, either there exists ¢ € U
such that H(x) = xc and G(x) = cx, or R satisfies s4 and there exist a,b,c € U,
such that H(x) = ax + xc, G(x) = c¢x + xb and (a — b)" = 0. In the first case we
are done. Thus we assume the second one: hence U = M>(C) the 2 x 2 matrix ring
over C. Since H(x) = ax + xc, G(x) = cx + xb, by the main assumption we have
0 = (H(x)x — xG(x))" = (ax* — x?b)" for all x € R. We denote a = Y ajje;j,
b =) bije;;, where any a;j, bij is an element of C.

Also here in order to prove our result, since the matrix (ax2 — xzb) is not invertible in
M;(C), we use the condition that its determinant is zero.

For x = ej1 = x2, it follows that

ail — b —bi2
X = (aey) —e1b) = |: i|

ary 0
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and

det(X) = 0 = az b1 = 0, (16)
and from this

X'"=0= (a11 —b11)" =0 = a1 = b1 =«. (17)
Analogously for x = ey = x? it follows

Y = (aexn —exnb) = |: 0 “ :|

—by1 axn —bxn

and

det(Y) =0 = ajpb2 =0 (18)
and from this

Y'"=0= (a2 —b)" =0 = an =bn = p. (19)

Let x = ey + ep1 = x2. It follows that

Z = (aeyy +aex; — enb —enb) = ! !
22 21 22 21
B—a—>by —bz

and using (17)—(19)
det(Z) =0 = app(—B+a —byp) =0. (20)

Our first aim is to prove that if b is not a diagonal matrix then either a is a diagonal one
or a + b is a central matrix. To do this, we suppose that both b and a are not diagonal and
then we will prove that a + b is a central matrix. In particular assume b1 # 0. Thus by
(16) we have az; = 0. Moreover since we suppose that a is not diagonal, a1 # 0 and by
(18) it follows by = 0.

Letx = e1| + e = x2, by using (17) it follows that

app  —bpp
M = (ae1 +aex; — e11b — e21b) =
B—a —biz

and
det(M) =0 = b12( —a —ax) =0. 21
Since a1z # 0 and by # 0, by (20) and (21) we have
—bp+p—-a=0,
ap+p—a=0,
therefore bj, = —ajp = y and

=[o) =iV

This means that if b is not diagonal and also a is not diagonal, then a + b is a diagonal
matrix.
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Let ¢(x) = (1 4+ e21)x(1 — e21) be an inner automorphism of M, (C). Of course,
plax®> = x*b)" =0

and the matrices ¢(a), ¢(b) satisfy the same properties of a and b. Denote by ¢(a);; the
(i, j)-entry of ¢(a), ¢(b);; the (i, j)-entry of ¢(b). Notice that ¢(a)12 = a1z # 0 and
@(b)12 = b2 # 0, thus by the above assertion ¢(a + b) is a diagonal matrix. Remark that
the (2, 1)-entry of ¢(a + b) must be zero, and it is 0 = 2« — 28. Hence the matrix a + b
is central in M»(C), in other words, if b is not a diagonal matrix and « is not a diagonal

one, then
_|lavy _|a =Y
=[5l =[5V

In this situation, let x = ej| + e21] + €12 + e2p so that x2 = 2x. It follows that

N = (ax2 —x2b) =2(ax — xa) = |:20’8 ;g ]
and det(N) = 0 implies b1» = B = 0 which is a contradiction.

This says that if b is not a diagonal matrix then a must be a diagonal one, say a =
ailerl + axen.

Again assume b1y # 0. As above let ¢(x) = (1 + e21)x(1 — e21) be an inner automor-
phism of M;(C). Notice that ¢(b)12 = b2 # 0, thus by the above assertion ¢(a) is a
diagonal matrix. Remark that the (2, 1)-entry of ¢ (a) must be zero, and itis 0 = a1 —ap;.
Hence the matrix a is central in M>(C), and if b is not a diagonal matrix then a is a central
one, say a = «(eq] + e22). From (17) and (19), we get

a0 | @ b2
S CR I P

and if (a — b)" = 0, we get

0 —bpn " _
[ 0] =0

that is, b12b21 = 0 and so bp1 = 0. Again for x = ep + 21 = x2, it follows

0 o
T = (aex +aey; — exnb —e1b) =
0 —bp2
and using 7" = 0 we have b}, = 0, which is again a contradiction.
Therefore b must be a diagonal matrix and analogously one may prove that a also must
be a diagonal one and from (16) and (18), we get

=55 e=l55]

Of course, for p(x) = (1 +e12)x(1 —e12), ¢(a) = ¢(b) is a diagonal matrix. In particular,
the (1, 2)-entry of ¢(a) must be zero, and it is 0 = 8 — «. Hence a = b is central in
M>(C). Therefore H(x) = x(c¢ + a) and G(x) = (¢ + a)x and we are done.

Consider finally the case when R is a commutative prime ring. This means that U = C
is a field. Since U does not contain any non-zero nilpotent element and any non-zero
zero-divisor, by easy calculations we have that (H — G)(x) = 0O for all x € R and then
H=0G. O
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Remark 1. Recall that any H generalized derivation of R has the following form: H(x) =
ax + d(x) for a suitable a € U and d a derivation of R. We point out that in the case the
conclusion H (x) = xc occurs for some ¢ € U, one may easily conclude that d is an inner
derivation of R induced by some element g € U, ¢ = a and [a, R] + d(R) = (0).

As consequences of the previous results, we also have the following:

Theorem 3. Let R be a non-commutative prime ring of characteristic different from 2,
U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, G a non-zero
generalized derivation of R, L a non-central Lie ideal of R. Suppose that there exists an
integer n > 1 such that [G(x), x]" = 0, for all x € L, then either there exists ¢ € C such
that G(x) = cx or R satisfies s4 andtherearec € U, o € C suchthat G(x) = cx+xc+ax,
forall x € R.

Theorem 4. Let R be a non-commutative prime ring of characteristic different from 2, U
the Utumi quotient ring of R, C = Z(U) the extended centroid of R, G a non-zero genera-
lized derivation of R. Suppose that there exists an integer n > 1 such that [G (x), x]" = 0,
for all x € R, then there exists ¢ € C such that G(x) = cx.
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