Proceedings Mathematical Sciences | |
Integral Inequalities for Self-Reciprocal Polynomials | |
Horst Alzer1  | |
[1] Morsbacher Str. 0, D- Waldbröl, Germany$$ | |
关键词: Self-reciprocal polynomials; integral inequalities.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let $n≥ 1$ be an integer and let $mathcal{P}_n$ be the class of polynomials 𑃠of degree at most ð‘› satisfying $z^nP(1/z)=P(z)$ for all $zin C$. Moreover, let ð‘Ÿ be an integer with $1≤ r≤ n$. Then we have for all $Pinmathcal{P}_n$:$$ð›¼_n(r)int^{2ðœ‹}_0|P(e^{it})|^2dt≤int^{2ðœ‹}_0|P^{(r)}(e^{it})|^2dt≤ð›½_n(r)int^{2ðœ‹}_0|P(e^{it})|^2dt$$with the best possible factorsegin{equation*}ð›¼_n(r)=egin{cases}prod^{r-1}_{j=0}left(frac{n}{2}-jight)^2, < ext{if ð‘› is even}, frac{1}{2}left[prod^{r-1}_{j=0}left(frac{n+1}{2}-jight)^2+prod^{r-1}_{j=0}left(frac{n-1}{2}-jight)^2ight], < ext{if ð‘› is odd},end{cases}end{equation*}andegin{equation*}ð›½_n(r)=frac{1}{2}prodlimits^{r-1}_{j=0}(n-j)^2.end{equation*}This refines and extends a result due to Aziz and Zargar (1997).
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506883ZK.pdf | 132KB | download |