Proceedings Mathematical Sciences | |
Torus Quotients of Homogeneous Spaces - Minimal Dimensional Schubert Varieties Admitting Semi-Stable Points | |
S S Kannan2  S K Pattanayak1  | |
[1] $$;Chennai Mathematical Institute, Plot H, SIPCOT IT Park, Padur Post Office, Siruseri 0 0, India$$ | |
关键词: Semistable points; line bundle; coxeter element.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
In this paper, for any simple, simply connected algebraic group ðº of type ðµ,ð¶ or ð· and for any maximal parabolic subgroup 𑃠of ðº, we describe all minimal dimensional Schubert varieties in $G/P$ admitting semistable points for the action of a maximal torus 𑇠with respect to an ample line bundle on $G/P$. We also describe, for any semi-simple simply connected algebraic group ðº and for any Borel subgroup ðµ of ðº, all Coxeter elements ðœ for which the Schubert variety ð‘‹(ðœ) admits a semistable point for the action of the torus 𑇠with respect to a non-trivial line bundle on ðº/ðµ .
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506861ZK.pdf | 282KB | download |