Proceedings Mathematical Sciences | |
An Elementary Approach to Gap Theorems | |
Harish Seshadri1  | |
[1] Department of Mathematics, Indian Institute of Science, Bangalore 0 0, India$$ | |
关键词: Riemannian manifold; sectional curvature; volume comparison; hyperbolic space.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Using elementary comparison geometry, we prove: Let (ð‘€, ð‘”) be a simply-connected complete Riemannian manifold of dimension ≥ 3. Suppose that the sectional curvature ð¾ satisfies $-1-s(r)≤ K≤ -1$, where ð‘Ÿ denotes distance to a fixed point in ð‘€. If $lim_{r→∞} e^{2r}s(r)=0$, then (ð‘€, ð‘”) has to be isometric to $mathbb{H}^n$.The same proof also yields that if ð¾ satisfies $-s(r)≤ K≤ 0$ where $lim_{r→∞}r^2 s(r)=0$, then (ð‘€, ð‘”)) is isometric to $mathbb{R}^n$, a result due to Greene and $Wu$.Our second result is a local one: Let (ð‘€, ð‘”) be any Riemannian manifold. For a $inmathbb{R}$, if $K≤ a$ on a geodesic ball $B_p(R)$ in ð‘€ and $K=a$ on $𜕠B_p(R)$, then $K=a$ on $B_p(R)$.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506834ZK.pdf | 106KB | download |