Proceedings Mathematical Sciences | |
Hölder Seminorm Preserving Linear Bijections and Isometries | |
A Jiménez-Vargas2  M A Navarro1  | |
[1] $$;Departamento de Ãlgebra y Análisis Matemático, Universidad de AlmerÃa, 00, AlmerÃa, Spain$$ | |
关键词: Lipschitz function; isometry; linear preserver problem; Banach-Stone theorem.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let (ð‘‹, ð‘‘) be a compact metric and $0 < 𛼠< 1$. The space $mathrm{Lip}^ð›¼(X)$ of Hölder functions of order 𛼠is the Banach space of all functions ð‘“ from ð‘‹ into $mathbb{K}$ such that $| f|=max {| f|_∞,L(f)} <∞$, where$$L(f)=sup{|f(x)-f(y)|/d^ð›¼(x,y):x,yin X, x≠y}$$is the Hölder seminorm of ð‘“. The closed subspace of functions ð‘“ such that$$limlimits_{d(x,y)→ 0}|f(x)-f(y)|/d^ð›¼(x,y)=0$$is denoted by $mathrm{lip}^ð›¼(X)$. We determine the form of all bijective linear maps from $mathrm{lip}^ð›¼(X)$ onto $mathrm{lip}^ð›¼(Y)$ that preserve the Hölder seminorm.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506824ZK.pdf | 189KB | download |