期刊论文详细信息
Proceedings Mathematical Sciences
Hölder Seminorm Preserving Linear Bijections and Isometries
A Jiménez-Vargas2  M A Navarro1 
[1] $$;Departamento de Álgebra y Análisis Matemático, Universidad de Almería, 00, Almería, Spain$$
关键词: Lipschitz function;    isometry;    linear preserver problem;    Banach-Stone theorem.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Let (𝑋, 𝑑) be a compact metric and $0 < 𝛼 < 1$. The space $mathrm{Lip}^𝛼(X)$ of Hölder functions of order 𝛼 is the Banach space of all functions 𝑓 from 𝑋 into $mathbb{K}$ such that $| f|=max {| f|_∞,L(f)} <∞$, where$$L(f)=sup{|f(x)-f(y)|/d^𝛼(x,y):x,yin X, x≠ y}$$is the Hölder seminorm of 𝑓. The closed subspace of functions 𝑓 such that$$limlimits_{d(x,y)→ 0}|f(x)-f(y)|/d^𝛼(x,y)=0$$is denoted by $mathrm{lip}^𝛼(X)$. We determine the form of all bijective linear maps from $mathrm{lip}^𝛼(X)$ onto $mathrm{lip}^𝛼(Y)$ that preserve the Hölder seminorm.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506824ZK.pdf 189KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:3次