Proceedings of the Indian Academy of Sciences. Mathematical sciences | |
Maps preserving $A^{\ast} A + AA^{\ast}$ on $C^{\ast}$-algebras | |
ALI TAGHAVI^11  | |
[1] Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran^1 | |
关键词: $C^{*}$-algebra; $\mathbb{C}$-linear; $\mathbb{C}$-antilinear; homomorphism; linear preserver problem; real rank zero; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let $\mathcal{A}$ be a $C^{*}$-algebra of real-rank zero and $\mathcal{B}$ be a $C^{*}$-algebra with unit $I$. It is shown that the mapping $\Phi: {\mathcal A}\longrightarrow {\mathcal B}$ which preserves arithmetic mean and satisfies$$\Phi(A^{*}A)=\frac{\Phi(A)^{*}\Phi(A)+\Phi(A)\Phi(A)^{*}}{2},$$for all normal elements $A\in \mathcal{A}$, is an $\mathbb R$-linear continuous Jordan $*$-homomorphism provided that $0\in {\rm Ran}\ \Phi$. Also, $\Phi$ is the sum of a linear Jordan $*$-homomorphism and a conjugate-linear Jordan $*$-homomorphism. This result also presents an application of maps which preserve the square absolute value.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910253873869ZK.pdf | 233KB | download |