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Abstract. Let A be a C∗-algebra of real-rank zero and B be a C∗-algebra with unit
I . It is shown that the mapping � : A −→ B which preserves arithmetic mean and
satisfies

�(A∗A) = �(A)∗�(A) + �(A)�(A)∗
2

,

for all normal elements A ∈ A, is an R-linear continuous Jordan ∗-homomorphism
provided that 0 ∈ Ran �. Also, � is the sum of a linear Jordan ∗-homomorphism and
a conjugate-linear Jordan ∗-homomorphism. This result also presents an application of
maps which preserve the square absolute value.
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1. Introduction and preliminaries

Linear preserver problems have been the main subject of many researches done by math-
ematicians in recent years (see [1–9,14–28]).

Historically, many mathematicians devoted their studies to additive or linear Jordan or
Lie product preservers between rings or operator algebras. Such maps are always called
Jordan homomorphism or Lie homomorphism [13,14]. By a ∗-homomorphism, we mean
a map � : A −→ B which preserves the ring structure and for which �(A∗) = �(A)∗ for
every A ∈ A. A map � : A → B is said to be a Jordan ∗-homomorphism if it is R-linear,
�(A∗) = �(A)∗ and �(A)2 = �(A2) for all A ∈ A.

Let R be a ∗-ring. For A, B ∈ R, A • B = AB + BA∗ and [A, B]∗ = AB − BA∗,
which are two different kinds of new products. These products are found to be playing an
important role in some research topics, and its study has recently attracted the attention of
many authors (for example, see [15,25]). A natural problem is to study whether the map
� preserving the new product on ring or algebra R is a ring or algebraic isomorphism. In
[5], Cui and Li proved a bijective map � on factor von Neumann algebras which preserves
[A, B]∗ must be a ∗-isomorphism. Moreover, in [10], Li discussed that the non-linear
bijective map preserving A • B is also a ∗-ring isomorphism. Also, in [28], it is shown that
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a bijective unital map (not necessarily linear) which preserves AP ± PA∗ for projection
operators P must be ∗-additive (i.e., additive and ∗-preserving) on prime C∗-algebra.
Recently, Liu and Ji [11] proved that a bijective map � on factor von Neumann algebras
preserves A∗B + BA∗ if and only if � is a ∗-isomorphism.

It is interesting to study the mappings that preserve A∗A+ AA∗, but this can be related
to preserving absolute value maps. Thus it is necessary to know about the background of
this work.

Let A and B be two unital C∗-algebras. We say that an additive mapping � : A −→
B preserves absolute value (resp. square absolute value) if �(|A|) = |�(A)| (resp.
�(|A|2) = |�(A)|2) for every A ∈ A, where |A|2 = A∗A. We also say a map � : A → B
preserves the arithmetic mean if �( A+B

2 ) = �(A)+�(B)
2 for all A, B ∈ A. The class of all

self-adjoint, skew self-adjoint and normal elements in A will be denoted by As , Ask and
AN , respectively.

Let H and K be Hilbert spaces and let B(H) and B(K ) denote the algebras of all bounded
linear operators on H and K , respectively. In [16], it is shown that if an additive mapping
� : B(H) −→ B(K ) satisfies |�(A)| = �(|A|) ∀A ∈ B(H), �(i I )K ⊂ �(I )K
and �(I ) is a projection, then � is the sum of two ∗-homomorphisms, one which is
C-linear and the other is C-antilinear. Moreover, in [26], it is proved that if A and B
are two unital C∗-algebras, � : A → B is an additive surjective mapping satisfying
�(|A|) = |�(A)| for every A ∈ A and �(I ) a projection, then the restriction of mapping
� to both As and Ask is a Jordan ∗-homomorphism onto the corresponding set in B.
Furthermore, if B is a C∗-algebra of real-rank zero, then � is a C-linear or C-antilinear
∗-homomorphism.

The aim of this paper is to continue this work by studying mappings � : A −→ B
that preserve the arithmetic mean and A∗A + AA∗ on AN , which in fact, satisfies
�(A∗A) = �(A)∗�(A)+�(A)�(A)∗

2 for all A ∈ AN , where A be a C∗-algebra of real-
rank zero and B be a C∗-algebra with identity I . It is shown that such a map � : A −→ B
on C∗-algebras is an R-linear Jordan ∗-homomorphism provided that 0 ∈ Ran �.
Also, � is the sum of linear Jordan ∗-homomorphism and a conjugate-linear Jordan ∗-
homomorphism. Also, in the last part our paper, we apply this result to obtain a descrip-
tion of maps on C∗-algebras which preserve the arithmetic mean and square absolute
value.

2. Main results

We need the following lemma for proving our main theorems.

Lemma 2.1. Let A and B be two C∗-algebras. If � : A → B is a map which preserves
positivity and the arithmetic mean on As , then

(i) � preserves self-adjoint operators.
(ii) � is an order preserving map.

(iii) �(λA) = λ�(A) + (1 − λ)�(0) for all A ∈ As and λ ∈ R.

Proof.

(i) Let A ∈ As . We have �(A) = �( 2A+0
2 ) = �(2A)+�(0)

2 , that is,

�(2A) = 2�(A) − �(0). (2.1)
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It implies that

�(A + B) = �

(
2A + 2B

2

)
= �(2A) + �(2B)

2
= �(A) + �(B) − �(0),

(2.2)

for all A, B ∈ As .
Let A ∈ A be a self-adjoint operator. We can write A = A+ − A−, where A+, A− are

positive operators. Hence we obtain �(A) = �(A+ − A−) = �(A+) − �(A−) + �(0).

This implies that � preserves self-adjoint operators.
(ii) Assume that A ≤ B. We have

�(B) = �
(2B − 2A + 2A

2

)
= �(2B − 2A)

2
+ �(2A)

2
. (2.3)

This follows that �(2A) ≤ 2�(B) which implies that 1
2�(0) ≤ �(B) for every positive

operator B. By using this inequality and (2.3), we obtain

�(2A) ≤ 2�(B) − 1

2
�(0). (2.4)

Replacing A with 0 in (2.4), we have 3
4�(0) ≤ �(B) for every positive operator. Again by

applying (2.3), we have �(2A) ≤ 2�(B)− 3
4�(0). It is then clear that n−1

n �(0) ≤ �(B)

and �(2A) ≤ 2�(B) − n−1
n �(0) for positive integers n and hence

�(0) ≤ �(B), �(2A) ≤ 2�(B) − �(0). (2.5)

By using (2.1) and (2.5), we obtain �(A) ≤ �(B), that is, � is order preserving.
(iii) By applying (2.2), we can compute

�(r A) = r�(A) + (1 − r)�(0), (2.6)

for all rational number r and for all A ∈ As .
Now, let A ∈ A be a positive operator and λ ∈ R be fixed for the moment and consider

arbitrary rational numbers r, s with r < λ < s. Since � is an order preserving, by using
(2.5) and (2.6), we have

2r�(A) + (1 − 2r)�(0) + �(0) = �(2r A) + �(0)

≤ 2�(λA)

≤ 2�(s A)

= 2s�(A) + 2(1 − s)�(0).

This gives �(λA) = λ�(A) + (1 − λ)�(0). �

We are now in a position to state our main results.
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Theorem 2.2. Let A and B be two C∗-algebras with identity I . Let � : A → B
be a map which 0 ∈ Ran � preserves the arithmetic mean and satisfies �(A∗A) =
�(A)∗�(A)+�(A)�(A)∗

2 for all A ∈ AN . Then, � is a continuous map and the restriction
of the mapping is � to As Jordan homomorphism. Furthermore, if I ∈ Ran �, then � is
unital and ∗-preserving.

Proof. We prove our theorem in several steps.

Step 1. � preserves self-adjoint operators and �(S2) = �(S)2 for all S ∈ As .

Let A ∈ A be a positive operator. Then there exists a unique positive operator B ∈ A
such that A = B2. We have �(A) = �(B2) = �(B)∗�(B)+�(B)�(B)∗

2 ≥ 0. By Lemma 2.1,
� preserves self-adjoint operators. Hence by the hypothesis we reach the statement.

Step 2. �(S)�(0) = �(0)�(S) = �(0) for all S ∈ AN such that �(S) is a self-adjoint
element.

Let S be a normal operator such that �(S) be a self-adjoint element by (2.2). Note that
according to the hypothesis, (2.2) holds for all A, B ∈ A3. We have

3�(0) + �(S∗S) = 2�(0) + 2�
( S∗S

2

)

= 2�(0) + 2
[
2�

( S∗S
4

)
− �(0)

]

= 4�
( S∗S

4

)
=

(
2�

( S

2

))∗(
2�

( S

2

))
= [�(S) + �(0)]∗[�(S) + �(0)]
= �(S∗S) + �(0) + �(0)�(S) + �(S)∗�(0).

This equation follows

�(S)�(0) + �(0)�(S) = 2�(0).

Multiply the above equation by �(0) from left and right, then we obtain

�(0)�(S)�(0) + �(0)�(S) = 2�(0).

�(S)�(0) + �(0)�(S)�(0) = 2�(0).

These equations imply

�(S)�(0) = �(0)�(S) = �(0).

Step 3. � is an additive map.

Note that we have �(A+B) = �(A)+�(B)−�(0) for all A, B ∈ A, so it is enough to
show that �(0) = 0. By the hypothesis, we can find an element A ∈ A such that �(A) = 0.
We have �(A) = �(A1 + i A2) = �(A1) + �(i A2) − �(0) = 0, where A1 = Re A =
(A+ A∗)/2 and A2 = Im A = (A− A∗)/(2i). By multiplying the above equation by �(0)

from left and by using Step 2, we get 0 = �(0)�(A1) + �(0)�(i A2) − �(0) = �(0).

(Note that �(i A2) = −�(A1) + �(0) is a self-adjoint element.) It follows that � is an
additive map.
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Step 4. If self-adjoint operators S, T commute, then

�(|S|)�(iT )∗ = −�(|S|)�(iT ).

|S| + iT is a normal operator because |S|, T commute. Hence we have

2�(S2 + T 2) = �(|S| + iT )∗�(|S| + iT ) + �(|S| + iT )�(|S| + iT )∗

= 2�(|S|)2 + 2�(T )2

+�(|S|)[�(iT )∗ + �(iT )]
+ [�(iT )∗ + �(iT )]�(|S|).

This follows that �(|S|)[�(iT )∗ + �(iT )] = −[�(iT )∗ + �(iT )�(|S|) and hence
�(|S|)2[�(iT )∗+�(iT )] = [�(iT )∗+�(iT )]�(|S|)2. It follows that �(|S|)2|�(iT )∗+
�(iT )| = |�(iT )∗ + �(iT )|�(|S|)2. Since by Step 1, �(|S|) is positive, it follows
that �(|S|)|�(iT )∗ + �(iT )| = |�(iT )∗ + �(iT )|�(|S|) and thus �(|S|)(�(iT )∗ +
�(iT )) = (�(iT )∗ + �(iT ))�(|S|) and so �(|S|)(�(iT )∗ + �(iT )) = 0. In fact,
�(|S|)�(iT )∗ = −�(|S|)�(iT ).

Step 5. � is an R-linear continuous map.

By Step 3, � is additive and by Lemma 2.1, R is a linear map.
To prove continuity, assume that A ∈ AN . Since � is order preserving, by the assumption

and inequality |A| ≤ ||A||I , we have

||�(A)||2 = |||�(A)|2|| ≤ 2||�(A∗A)|| ≤ 2||A||2||�(I )||.
Taking square root, we obtain ||�(A)|| ≤ √

2||�(I )||||A||.
Now, assume A is an arbitrary element, then we have

||�(A)|| = ||�(A1 + i A2)|| ≤ ||�(A1)|| + ||�(i A2)||
≤ √

2||�(I )||||A1|| + √
2||�(I )||||A2||

≤ 2
√

2||�(I )||||A||.
Hence � is a continuous map.

Step 6. Restriction of the map � to As is a Jordan homomorphism.

By Steps 1 and 5, we reach the statement.
From now on, to prove the last part of the theorem, we assume that I ∈ Ran �.

Step 7. � is a unital map.

Since I ∈ Ran �, we can find an operator U ∈ A such that �(U ) = I . We can write
�(U ) = �(U1 + iU2) = �(U1) + �(iU2) = I , and so,

�(iU2) = I − �(U1) (2.7)

is a self-adjoint operator. Hence by applying Step 4, we get�(I )�(iU2) = −�(I )�(iU2)
∗

= −�(I )�(iU2) and so �(I )�(iU2) = 0. Hence by multiplying equation (2.7) by �(I )
from left and right, we obtain

�(I )�(U1) = �(U1)�(I ) = �(I ). (2.8)
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Also we have �((I + U1)
2) = �(I + U1)

2. It follows that �(U1) = �(I ) by (2.8) and
so �(U1) is a projection element. Also, since �(iU ) is self-adjoint, we have �(U2)

2 =
�(iU2)

2. Therefore, by equation (2.7), we have �(U2)
2 = �(iU2)

2 = I + �(U1
2) −

2�(U1) = I − �(U1
2). So �(U1

2 + U2
2) = I . This means that there exists a positive

operator U such that �(U ) = I .
Finally, since � is Jordan homomorphism on As , we have 2I = �(2U I ) =

�(U )�(I ) + �(I )�(U ) = 2�(I ), that is, �(I ) = I .

Step 8. � is ∗-preserving.

Steps 4 and 7 imply that � is ∗-preserving. �

COROLLARY 2.3

Let A and B be two C∗-algebras with identity I . Let � : A → B be a map which
preserves the arithmetic mean and square absolute value onAN . Then, � is a continuous
map and the restriction of the mapping � toAs is a Jordan homomorphism provided that
0 ∈ Ran �. Furthermore, if I ∈ Ran �, then � is unital and ∗-preservivg.

Proof. According to Theorem 2.2, it is enough to show that � preserves normal elements.
Firstly, by a similar argument as in the proof of Steps 1, 2 and 3 of Theorem 2.2, one can
show that these steps are valid in this result, in fact, the restriction of � to AS is a Jordan
homomorphism.

As in the proof of Step 2 of [22], we prove that if A = A1 + i A2 is a normal operator,
then

�(i A2)
∗�(A1) = −�(A1)�(i A2). (2.9)

Recall that A1 and A2 commute.
As in Step 7, we can show that � is a unital map. Substituting A1 = I in equation

(2.9) implies that � is ∗-preserving and hence we have �(i A2)�(A1) = �(A1)�(i A2).

Therefore, �(A) is a normal operator. The statement follows from Theorem 2.2. �

Theorem 2.4. LetA be aC∗-algebra of real-rank zero andB be aC∗-algebrawith identity
I . Let � : A ⊆ B(H) → B ⊆ B(K ) be a map which 0 ∈ Ran � preserves the arithmetic
mean on AN and satisfies �(A∗A) = �(A)∗�(A)+�(A)�(A)∗

2 for all A ∈ AN . Then, � is
anR-linear Jordan ∗-homomorphism. Also, there exist orthogonal projections Q1 and Q2
in B such that

(i) �(A) = �1(A) ⊕ �2(A) for all A ∈ A, where
(ii) �1 : A −→ Q1BQ1 is a linear Jordan ∗-homomorphism.

(iii) �2 : A −→ Q2BQ2 is a conjugate-linear Jordan ∗-homomorphism.

Proof. As above, we prove our theorem in several steps.

Step 1. � is ∗-preserving.

Let P be a projection. By the hypothesis, we have both �(i P)�(i P)∗ ≤ 2�(P)2 and
�(i P)∗�(i P) ≤ 2�(P)2. By Theorem 1 of [6], it implies that Ran �(i P) ⊂ Ran �(P)
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and Ran �(i P)∗ ⊂ Ran �(P), respectively and so �(P)�(i P) = �(i P) and �(i P)∗ =
�(P)�(i P)∗. Now, by using Step 4 of Theorem 2.2, we get �(i P)∗ = �(P)�(i P)∗ =
−�(P)�(i P) = −�(i P). If S is of the form A = ∑n

j=1 λ j Pj for some scalars λ j ∈ C
and finitely many mutually orthogonal projections Pj , then we have

�(A)∗ = �
( n∑

j=1

λ j Pj

)∗ =
n∑
j=1

�(λ j Pj )
∗ =

n∑
j=1

�(λ j Pj ) = �(A∗).

Since by Theorem 2.6 of [2] every element can be approximated by elements of the above
form; hence, the continuity of � entails �(A)∗ = �(A∗) for every A ∈ A. That is, � is
∗-preserving.

Step 2. �(|A|) = |�(A)| for all A ∈ As ∪ Ask (i.e. � preserves absolute values) on As

and Ask .

By Step 1, � is ∗-preserving and so by the hypothesis and Theorem 2.2, we can obtain
|�(A)|2 = �(|A|2) = �(|A|)2 for all A ∈ As ∪ Ask . It follows the result.

Step 3. � preserves orthogonality projection and

�(I )�(S) = �(S)�(I ) = �(S), ∀S ∈ As .

Clearly, � preserves projections. Let P and Q be two orthogonal projections. By The-
orem 2.2, the restriction of the mapping � to As is a Jordan homomorphism and thus,
�(P)�(Q) + �(Q)�(P) = �(PQ + QP) = �(0) = 0. Hence

�(P)�(Q) = −�(Q)�(P) = −�(Q)2�(P)

= �(Q)�(P)�(Q) = −�(P)�(Q),

which implies that �(Q)�(P) = �(P)�(Q) = 0.

In particular, it follows that 0 = �(P)�(I − P) = �(I − P)�(P), and consequently,
�(I )�(P) = �(P)�(I ) = �(P). Since every self-adjoint element with finite spectra
are dense in As , the continuity of � entails �(I )�(S) = �(S)�(I ) = �(S) for all
S ∈ As .

Step 4. There exists a partial isometry V ∈ B(K ) with initial space Ran �(I ) such that
�(A)V = V�(A) and

�(A + i B) = �(A) + V�(B), ∀A, B ∈ As .

Let �(i I ) = V�(I ) be the polar decomposition of �(i I ). (Note that |�(i I )| =
�(|i I |) = �(I ).) Then V is a partial isometry with initial space Ran �(I ). Also, we
have �(I )V ∗ = �(i I )∗ = −�(i I ) = −V�(I ). By Theorem 2.2, �(I )2 = �(I ) and so,
we can conclude that �(I )V ∗�(I ) = V�(I )2 = −V�(I ) = �(I )V ∗ = �(I )2V ∗ =
−�(I )V�(I ). It follows that 〈(V ∗+V )�(I )x,�(I )y〉 = 〈�(I )(V ∗+V )�(I )x, y〉 = 0
for all x, y ∈ H and so V ∗ + V = 0, that is, V ∗ = −V . Moreover, assume that P ∈ A
is a projection and, �(i P) = VP�(P) and �(i(I − P)) = VI−P�(I − P) are the polar
decomposition of �(i P) and �(i(I − P)) respectively. Then by Step 3, it follows that
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�(i P) = VP�(P) = VP�(P)2

= [VP�(P) + VI−P�(I − P)]�(P)

= �(i I )�(P) = V�(I )�(P)

= V�(P).

If S is of the form A = ∑n
j=1 λ j Pj for some scalers λ j ∈ R and finitely many mutually

orthogonal projections Pj , then we have

�(i A) = �
( n∑

j=1

iλ j Pj

)
=

n∑
j=1

λ j�(i Pj ) = V�
( n∑

j=1

λ j Pj

)
= V�(A).

Since by Theorem 2.6 of [2] every element can be approximated by elements of the above
form; hence, the continuity of � entails �(i A) = V�(A) for every self-adjoint A ∈ As ,
and also V�(A) = �(i A) = −�(i A)∗ = −�(A)V ∗ = �(A)V . This completes the
proof.

Step 5. � is a Jordan ∗-homomorphism.

Let A ∈ A be an arbitrary element. By Step 4 and Theorem 2.2, we can compute

�(A2) = �((A1 + i A2)
2)

= �(A1)
2 − �(A2)

2 + �(i(A1A2 + A2A1))

= �(A1)
2 − �(A2)

2 + V�(A1)�(A2) + V�(A2)�(A1)

= �(A1)(�(A1) + V�(A2)) + V�(A2)(�(A1) + V�(A2))

= (�(A1) + V�(A2))
2 = (�(A1) + �(i A2))

2

= �(A1 + i A2)
2 = �(A)2,

which means that � is a Jordan ∗-homomorphism.

Step 6. � is the sum of a linear Jordan ∗-homomorphism and a conjugate-linear Jordan
∗-homomorphism.

Let A ∈ A. By using Steps 3 and 4, we obtain

�(I )�(A) = �(I )�(A1 + i A2)

= �(I )�(A1) + �(I )�(i A2)

= �(A1) + �(I )V�(A2)

= �(A1) + V�(I )�(A2)

= �(A1) + V�(A2) = �(A1) + �(i A2)

= �(A1 + i A2) = �(A).

Similarly, we can get �(A) = �(A)�(I ) for all A ∈ A.
Since �(i I ) is skew self-adjoint, �(i I ) = iW for some self-adjoint element W ∈ B. It

is easy to see that Q = W+�(I )
2 is a projection and �(i I ) = i(2Q − �(I )).

Now, assume that Q = Q1 is a nontrivial projection in B and Q2 = I − Q1 (it is
obvious that if Q is a trivial projection, then � is a linear or conjugate-linear Jordan ∗-
homomorphism). Denote Bi j = QiBQ j , i, j = 1, 2, then B = ∑2

i, j=1 Bi j . By using
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Steps 3 and 4, we obtain for A ∈ A
�(i I )�(A) = �(i I )�(A1 + i A2)

= �(i I )�(A1) + �(i I )�(i A2)

= V�(I )�(A1) + V�(I )V�(A2)

= �(A1)V�(I ) + V�(A2)V�(I )

= �(A1)�(i I ) + V�(A2)�(i I )

= �(A1 + i A2)�(i I ) = �(A)�(i I ).

It follows that Q commutes with �(A) for all A ∈ A. Consequently, we write �(A) =
�(A)11 + �(A)22 = B11 + B22. It follows that Bi j ∈ Bi j when we write Bi j . It follows
that

�(A) = Q1�(A)Q1 + Q2�(A)Q2 = Q1�(A) + Q2�(A),

for all A ∈ A. Now, define �1 and �2 by �i (A) = Qi�(A), i = 1, 2. Then by
Step 5, �i : A −→ Bi is the Jordan ∗-homomorphism, i = 1, 2. In addition, as �1(i I ) =
Q1�(i I ), we see that �1(i I ) = i Q1 and �2(i I ) = −i Q2. By using Step 4, we have

�1(i A) = Q1�(i A) = Q1V�(A)

= Q1V�(I )�(A) = Q1�(i I )�(A)

= i Q1(Q1 − Q2)�(A) = i Q1�(A)

= i�1(A)

for all A ∈ As . Hence �1 is a linear map.
Similarly, we can show that �2 : A −→ B2 is a conjugate-linear Jordan ∗-

homomorphism. �
Our last result gives a characterization of maps preserving square absolute values and

arithmetics by using Theorem 2.4.

COROLLARY 2.5

Let A be a C∗-algebra of real-rank zero and B be a C∗-algebra with identity I . Let
� : A → B be a map which preserves the arithmetic mean and square absolute value
on AN . Then, � is an R-linear Jordan homomorphism on As provided 0 ∈ Ran �.
Furthermore, if I ∈ Ran �, then there exist orthogonal projections Q1 and Q2 in B such
that

(i) �(A) = �1(A) ⊕ �2(A) for all A ∈ A.
(ii) �1 : A −→ Q1BQ1 is a linear Jordan ∗-homomorphism.

(iii) �2 : A −→ Q2BQ2 is a conjugate-linear Jordan ∗-homomorphism.

Proof. Similarly to Corollary 2.3, we can show that � preserves normal elements which
together by Theorem 2.4 implies the statement. �

The following examples show that the condition of 0 ∈ Ran � is needed in the above
theorems and corollaries and also the condition of I ∈ Ran � is needed in the above
corollaries.
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Example 2.6. Define an additive mapping � : C −→ B(C2) by

�(a + ib) =
(
a 0
b 0

)

for all a, b ∈ R, where C is the C∗-algebra all of complex numbers. Obviously, � satisfies
the assumptions in the above corollaries except the condition of I ∈ Ran � but not their
conclusions.

Example 2.7. The constant map A → I, A ∈ A satisfies the assumptions in the above
theorems and corollaries except the condition of 0 ∈ Ran � but not their conclusions.
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