期刊论文详细信息
Proceedings Mathematical Sciences | |
Multiple Positive Solutions to Third-Order Three-Point Singular Semipositone Boundary Value Problem | |
Huimin Yu2  L Haiyan1  Yansheng Liu1  | |
[1] $$;Department of Mathematics, Shandong Normal University, Jinan 0 0, People’s Republic of China$$ | |
关键词: Singular semipositone boundary value problem; cone; positive solution; fixed point theorem.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
By using a specially constructed cone and the fixed point index theory, this paper investigates the existence of multiple positive solutions for the third-order three-point singular semipositone BVP:egin{equation*}egin{cases}x'"(t)-𜆠f(t,x)=0, & tin(0, 1);\ x(0)=x'(ðœ‚)=x"(1)=0,end{cases}end{equation*}where $frac{1}{2} < 𜂠< 1$, the non-linear term $f(t,x): (0,1)×(0,=∞)→(-∞ +∞)$ is continuous and may be singular at ð‘¡ = 0, ð‘¡ = 1, and ð‘¥ = 0, also may be negative for some values of ð‘¡ and ð‘¥, 𜆠is a positive parameter.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506668ZK.pdf | 117KB | download |