期刊论文详细信息
Proceedings Mathematical Sciences
Sums of Two Polynomials with Each having Real Zeros Symmetric with the Other
Seon-Hong Kim1 
[1] School of Mathematical Sciences, Seoul National University, Seoul -, Korea$$
关键词: Polynomial;    zero;    geometric progression.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Consider the polynomial equation$$prod_{i=1}^n(x-r_i)+prod_{i=1}^n(x+r_i)=0,$$where $0 < r_1 ≤ r_2 ≤ cdots ≤ r_n$. All zeros of this equation lie on the imaginary axis. In this paper, we show that no two of the zeros can be equal and the gaps between the zeros in the upper half-plane strictly increase as one proceeds upward. Also we give some examples of geometric progressions of the zeros in the upper half-plane in cases 𝑛 = 6, 8, 10.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506567ZK.pdf 115KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:5次