
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 112, No. 2, May 2002, pp. 283–288.
© Printed in India

Sums of two polynomials with each having real zeros
symmetric with the other

SEON-HONG KIM

School of Mathematical Sciences, Seoul National University, Seoul 151-742, Korea
E-mail: s-kim17@orgio.net

MS received 19 June 2001; revised 8 November 2001

Abstract. Consider the polynomial equation

n∏
i=1

(x − ri) +
n∏

i=1

(x + ri) = 0,

where 0< r1 ≤ r2 ≤ · · · ≤ rn. All zeros of this equation lie on the imaginary axis. In this
paper, we show that no two of the zeros can be equal and the gaps between the zeros in the
upper half-plane strictly increase as one proceeds upward. Also we give some examples
of geometric progressions of the zeros in the upper half-plane in casesn = 6, 8, 10.
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1. Introduction

Throughout this paper,n is an integer≥2. There is an extensive literature concerning
zeros of sums of polynomials. A classical text in this subject is Marden’s book [2]. The
fourth chapter of [2] examines linear combinations of polynomials, and combinations of
a polynomial and its derivative. Perhaps the most immediate question of sums of polyno-
mials,A + B = C, is “given bounds for the zeros ofA andB, what bounds can be given
for the zeros ofC?” By Fell [1], if all zeros ofA andB lie in [−1, 1] with A, B monic
and degA = degB = n, then no zero ofC can have modulus exceeding cot(π/2n), the
largest zero of(x + 1)n + (x − 1)n. This suggests to study polynomials having a form
something likeA(x) + B(x) where all zeros ofA(x) are negative and all zeros ofB(x)

are positive. In this paper, we study zero distributions of the polynomial equation

n∏
i=1

(x − ri) +
n∏

i=1

(x + ri) = 0, (1.1)

where 0< r1 ≤ r2 ≤ · · · ≤ rn. All zeros of (1.1) lie on the imaginary axis. In fact, ifz

is a zero, then
∏n

i=1(z − ri) = −∏n
i=1(z + ri). On taking absolute values, one gets that

the product of the distances ofz from the points−ri equals the product of the distances
of z from the pointsri . Thus, ifz is to the left or to the right of they-axis, one of these
distances is bigger.

The main purpose of this paper is to characterize the setSn of all positive numbers

{s1, . . . , sbn/2c}
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such that

{±i s1, . . . ,±i sbn/2c}
is the set of nonzero zeros of some

P(x) =
n∏

i=1

(x − ri) +
n∏

i=1

(x + ri),

where 0< r1 ≤ r2 ≤ · · · ≤ rn. We remark that an{si} ∈ S does not determine an{ri}
uniquely, for example,

(x − 1)(x − 2)(x − 3) + (x + 1)(x + 2)(x + 3) = (x − α)3 + (x + α)3,

whereα = √
22/6 = 1.914· · · . We will show in §2 that in general no two of thesi can

be equal. Of special interest is to investigate whether elements ofSn can be arithmetic or
geometric progressions. We shall prove in §2 that

si+1 − si > si − si−1

for eachi, 2 ≤ i ≤ bn/2c−1, so the gaps between the zeros in the upper half-plane strictly
increase as one proceeds upward. We can, however, find some geometric progressions. In
fact, we shall give some examples of geometric progressions inS6, S8 andS10.

2. Results and proofs

We first show in Proposition 2.1 that no two of thesi can be equal.

PROPOSITION 2.1

Let

P(x) =
n∏

i=1

(x − ri) +
n∏

i=1

(x + ri),

where0 < r1 ≤ r2 ≤ · · · ≤ rn. Then all zeros ofP(x) are simple.

Proof. Suppose, if possible, thatP(z) = P ′(z) = 0. Then

0 = P ′(z) =
n∑

i=1

{∏
j 6=i

(z − rj ) +
∏
j 6=i

(z + rj )

}

=
n∑

i=1

{∏
j 6=i

(z − rj ) − z − ri

z + ri

∏
j 6=i

(z − rj )

}

on using
∏n

i=1(z − ri) = −∏n
i=1(z + ri). Thus,

0 =
n∑

i=1

2ri

z + ri

∏
j 6=i

(z − rj ) =
{

n∑
i=1

2ri
∏
j 6=i

(z2 − r2
j )

}/ n∏
i=1

(z + ri).
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In other words, sincez = is for some real numbers, we have

0 =
n∑

i=1

ri
∏
j 6=i

(s2 + r2
j )

an impossibility, since all terms are positive.2

For main result of this paper, we need the following lemma.

Lemma2.2. Let the functionG(y) be twice differentible ony ≥ 0. Suppose thatG(0) = 0,
G′(y) > 0 andG′′(y) < 0 for y ≥ 0. If

G(y1) = m, G(y2) = m + d, G(y3) = m + 2d,

with d > 0, then

y3 − y2 > y2 − y1.

Proof. It is clear that the inverse functionG−1 exists and is strictly convex. This implies
that

G−1
(

x + y

2

)
<

G−1(x) + G−1(y)

2
for 0 < x < y.

Upon applyingG−1 to both sides of

G(y2) = G(y1) + G(y3)

2
,

we find that

y2 <
y1 + y3

2
,

and the result follows. 2

Now we have

Theorem 2.3. Let the zeros of polynomialP(x) above the real axis be

is1, is2, . . . , isbn/2c.

Then we have

si+1 − si > si − si−1

for eachi, 2 ≤ i ≤ bn/2c − 1, so the gaps between the zeros in the upper half-plane
strictly increase as one proceeds upward.

Proof. Suppose thats is a zero ofP(x). Then s lies on the imaginary axis. Let, for
eachi, αi = 6 s(−ri)o andβi = π − 6 srio, whereo denotes the origin. Then we have
0 < αi < π/2 andβi = π − αi for eachi. Since

exp

(
i

n∑
i=1

αi

)
+ exp

(
i

n∑
i=1

βi

)
= 0,
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we have
n∑

i=1

αi ≡
n∑

i=1

(π − αi) + π (mod 2π )

and hence

2
n∑

i=1

αi

π
≡ n + 1 (mod 2).

On the other hand,

0 < 2
n∑

i=1

αi

π
<

2

π
· n · π

2
= n.

So

2
n∑

i=1

αi

π
= n − 1, n − 3, n − 5, . . . , c, (2.1)

wherec = 0 if n is odd andc = 1 if n is even. Hereαi = tan−1 s/ri . Define a function in
y, y ≥ 0,

G(y) := 2

π

n∑
i=1

tan−1 y

ri
.

ThenG(0) = 0 and asy increases from 0 the graph ofG(y) increases and is concave
downward, since

G′(y) = 2

π

n∑
i=1

ri

r2
i + y2

and G′′(y) = − 2

π

n∑
i=1

2riy

(r2
i + y2)2

.

Also, by (2.1), thesj are the solutions to

G(y) = n − 1, n − 3, n − 5, . . . , c, (2.2)

wherec = 0 if n is odd andc = 1 if n is even. The numbers on the right side of (2.2) are
in the arithmetic progression. So the result follows from Lemma 2.2.2

Finally, we draw our attention to the principal idea (see (2.1)) which makes the proof
of Theorem 2.3 work and which is independently interesting. This is the following fact.

PROPOSITION 2.4

Let the zeros of polynomialP(x) above the real axis be

is1, is2, . . . , isbn/2c.

If αj (sk) denotes the angle formed at the real numberrj by the triangle joiningrj , isk and
the origin, then the sums

θk =
n∑

j=1

αj (sk)
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for k = bn/2c, . . . , 2, 1 are, respectively, the numbers

π(n − 1)

2
,

π(n − 3)

2
,

π(n − 5)

2
, . . . ,

πc

2
,

wherec = 0 if n is odd andc = 1 if n is even. In particular, these are independent of the
rj ’s.

From Theorem 2.3, a further natural question of interest is whether thesi can be in
geometric progression. For the rest of this paper, we give some examples of geometric
progressions inS6, S8 andS10.

Some simple examples of geometric progressions inS6 arise from the identity

(x − a)3(x − b)3 + (x + a)3(x + b)3

= 2(u + ab)(u2 + (3a2 + 8ab + 3b2)u + (ab)2)

= 2Q1(u)Q2(u), u = x2, say,

since the product of the zeros ofQ2 is the square of the zero ofQ1. For another point of
view on geometric progressions contained inS6, observe the identity

(x − h)(x − hq2)(x − hq4)(x − hq6)(x − hq8)(x − hq10)

+ (x + h)(x + hq2)(x + hq4)(x + hq6)(x + hq8)(x + hq10)

= 2(x2 + 1)(x2 + h2q10)(x2 + h4q20)

− 2x2(x2 + h2q10)

(
1 − q2(q4 + 1)

q7 − 1

q − 1

q7 + 1

q + 1
h2 + h4q20

)
.

If we takeq = 2 andh = 0.5950. . . , a zero of

220h4 − 371348h2 + 1,

the last factor on the right side of the identity becomes zero and we have a case in which
theri and thesi areboth in geometric progression, and theri are all distinct.

For S8 andS10, we have examples below. The following can be verified by computer
algebra. First, forS8, if t is the largest real zero(= 14.415. . . ) of

t4 − 12t3 − 34t2 − 12t + 1 = 0,

then the zeros of

(x − 1)4(x − t)4 + (x + 1)4(x + t)4 = 0

in the upper half-plane are in geometric progression with ratio equal to the larger real zero
(= 4.611. . . ) of

z4 − 4z3 − 2z2 − 4z + 1 = 0.

Finally, for S10, if t is the largest real zero(= 24.375· · · ) of

t4 − 22t3 − 57t2 − 22t + 1 = 0
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then the zeros of

(x − 1)5(x − t)5 + (x + 1)5(x + t)5

in the upper half-plane are in geometric progression with ratio equal to the larger real zero
(= 3.985· · · ) of

z4 − 4z3 + z2 − 4z + 1 = 0.

In fact, for every positive integerm, it seems that

2m∏
i=1

(x − gi) +
2m∏
i=1

(x + gi) = 2
m∏

i=1

(x2 + ri),

for some real positive geometric progressions{g1, . . . , g2m} and {r1, . . . , rm}. But it
remains an open problem.
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