Proceedings Mathematical Sciences | |
On Ricci Curvature of ð¶-totally Real Submanifolds in Sasakian Space Forms | |
Liu Ximin1  | |
[1] Department of Applied Mathematics, Dalian University of Technology, Dalian 0, China$$ | |
关键词: Ricci curvature; ð¶-totally real submanifold; Sasakian space form.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let ð‘€ð‘› be a Riemannian ð‘›-manifold. Denote by $S(p)$ and $overline{Ric}(p)$ the Ricci tensor and the maximum Ricci curvature on ð‘€ð‘›, respectively. In this paper we prove that every ð¶-totally real submanifold of a Sasakian space form $overline{M}^{2m + 1}(c)$ satisfies $S≤ left(frac{(n - 1)(c + 3)}{4} + frac{n^2}{4}H^2ight)g$, where $H^2$ and ð‘” are the square mean curvature function and metric tensor on ð‘€ð‘›, respectively. The equality holds identically if and only if either ð‘€ð‘› is totally geodesic submanifold or ð‘› = 2 and ð‘€ð‘› is totally umbilical submanifold. Also we show that if a ð¶-totally real submanifold ð‘€ð‘› of $overline{M}^{2n + 1}(c)$ satisfies $overline{Ric}=frac{(n-1)(c+3)}{4} + frac{n^2}{4}H^2$ identically, then it is minimal.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506539ZK.pdf | 82KB | download |