期刊论文详细信息
Proceedings Mathematical Sciences
On Ricci Curvature of 𝐶-totally Real Submanifolds in Sasakian Space Forms
Liu Ximin1 
[1] Department of Applied Mathematics, Dalian University of Technology, Dalian 0, China$$
关键词: Ricci curvature;    𝐶-totally real submanifold;    Sasakian space form.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Let 𝑀𝑛 be a Riemannian 𝑛-manifold. Denote by $S(p)$ and $overline{Ric}(p)$ the Ricci tensor and the maximum Ricci curvature on 𝑀𝑛, respectively. In this paper we prove that every 𝐶-totally real submanifold of a Sasakian space form $overline{M}^{2m + 1}(c)$ satisfies $S≤ left(frac{(n - 1)(c + 3)}{4} + frac{n^2}{4}H^2ight)g$, where $H^2$ and 𝑔 are the square mean curvature function and metric tensor on 𝑀𝑛, respectively. The equality holds identically if and only if either 𝑀𝑛 is totally geodesic submanifold or 𝑛 = 2 and 𝑀𝑛 is totally umbilical submanifold. Also we show that if a 𝐶-totally real submanifold 𝑀𝑛 of $overline{M}^{2n + 1}(c)$ satisfies $overline{Ric}=frac{(n-1)(c+3)}{4} + frac{n^2}{4}H^2$ identically, then it is minimal.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506539ZK.pdf 82KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:10次