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Abstract. Let M" be a Riemannian-manifold. Denote bys(p) andRic(p) the
Ricci tensor and the maximum Ricci curvature &, respectively. In this paper
we prove that everg-totally real submanifold of a Sasakian space faa"+t1(c)

satisfiesS < (W + éHz)g, whereH? andg are the square mean curvature
function and metric tensor ", respectively. The equality holds identically if and
only if either M" is totally geodesic submanifold ar= 2 andM" is totally umbilical
submanifold. Also we show that if @-totally real submanifold” of M2*+1(c)

satisfiesRic = @~ | %HZ identically, then it is minimal.
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1. Introduction

Let M" be a Riemannian-manifold isometrically immersed in a Riemanniaamanifold
M™ (c¢) of constant sectional curvature Denote byg, R andh the metric tensor, Riemann
curvature tensor and the second fundamental form/bf respectively. Then the mean
curvature vecto/ of M" is given byH = %traceh. The Ricci tensolS and the scalar
curvaturep at a pointp € M" are given byS(X,Y) = > 7 _;(R(ei, X)Y,¢;) andp =
Y ' 1 S(ei, €), respectively, wherges, ..., e,} is an orthonormal basis of the tangent
spacel, M". A submanifoldi” is called totally umbilical if:, H andg satisfyh(X,Y) =
g(X, Y)H for X, Y tangent toM".
The equation of Gauss for the submanifeid is given by
8RIX,Y)Z, W) = c(g(X,W)gY,Z) —g(X, Z)g(Y, W))
+g(h(X, W), h(Y, Z)) — g(h(X, Z), h(Y, W)), (1)

whereX, Y, Z, W € TM". From (1) we have
p=n(n—1c+n’H? - |h ()
where|h|? is the squared norm of the second fundamental form. From (2) we have
p <nn-—12Lc —+—n2H2,

with equality holding identically if and only iM" is totally geodesic.
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Let Ric(p) denote the maximum Ricci curvature function &t defined by
Ric(p) = max{(S(u, u)|u € TyM", p e M"},

whereTyM" = {v € T,M"|(v, v) = 1}.
In [3], Chen proves that there exists a basic inequality on Ricci tehBmrany subman-
ifold M" in M™(c), i.e.

n2 2
5 < <(”_1)C+ZH )g, 3)

with the equality holding if and only if eithe¥’” is a totally geodesic submanifold or= 2

and M" is a totally umbilical submanifold. And in [4], Chen proves that every isotropic
submanifoldM” in a complex space form” (4c) satisfiesRic < (n — 1)c + %Hz,

and every Lagrangian submanifold of a complex space form satisfying the equality case
identically is a minimal submanifold. In the present paper, we would like to extend the
above results to th€'-totally real submanifolds of a Sasakian space form, namely, we
prove that everyC-totally real submanifold of a Sasakian space fauf”+1(c) satisfies

S < (%@*3) + %Hz)g, and the equality holds identically if and only if eith&f" is

totally geodesic submanifold ar= 2 andM" is totally umbilical submanifold. Also we
show that if aC-totally real submanifold/” of a Sasakian space form?'+1(c) satisfies

Ric = (=Dt | %HZ identically, then it is minimal.

2. Preliminary

Let M?"*+1 be an odd dimensional Riemannian manifold with megtit.et ¢ be a (1,1)-
tensor field¢ a vector field, and a 1-form onM2"+1, such that

¢*X = —X +n(X)E, ¢£ =0, n@X) =0, nE) =1,
g@X, 9Y) = g(X,Y) — n(X)n(Y), n(X)=g(X,&).

If, in addition,dn(X, Y) = g(¢X, Y), for all vector fieldsX, ¥ on M?"+1 thenp?n+1
is said to have a contact metric struct@e £, 5, g), andM?"+1is called a contact metric
manifold. If moreover the structure is normal, that issi{, Y]+ ¢?[X, Y] — o[ X, $Y] —
oloX, Y] = —2dn(X, Y)&, then the contact metric structure is called a Sasakian structure
(normal contact metric structure) and?"+1 is called a Sasakian manifold. For more
details and background, see the standard references [1] and [8].

A plane sectior in T, M?"+1 of a Sasakian manifold7?"*! is called ag-section if
it is spanned byX and¢X, whereX is a unit tangent vector field orthogonal§o The
sectional curvaturé& (o) with respect to a-sectione is called ag-sectional curvature.
If a Sasakian manifoldZ2"+1 has constang-sectional curvature, M2"*1 is called a
Sasakian space form and is denotedb$' 1 (c).

The curvature tensak of a Sasakian space form2"+1(c) is given by [8]

RX.Y)Z = #’(g(Y, 2)X — g(X, 2)Y)

-1
+ CT(n(X)n(Z)Y —nMn(2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)§
+ 8(dY. 2)pX — g(9X, Z)pY — 28(9pX. V)9 Z),
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for any tangent vector fieldg, Y, Z to M2"+1(c).

An n-dimensional submanifold/” of a Sasakian space fortd?"t1(c) is called a
C-totally real submanifold ofiZ?"+1(¢) if £ is a normal vector field ods™. A direct
consequence of this definition is thatT M") c T-M", which means thap/” is an
anti-invariant submanifold a#72"+1(¢c). So we have: < m.

The Gauss equation implies that

1
+ g(h(X, W), h(Y, Z)) — g(h(X, Z), h(Y, W)),  (4)

for all vector fieldsX, Y, Z, W tangent toM”, whereh denotes the second fundamental
form andR the curvature tensor aif”.

Let A denote the shape operator 8ff in M2"*+1(c). ThenA is related to the second
fundamental fornk by

gh(X,Y), ) = g(A X, Y), (5)

whereq is a normal vector field o”.
For C-totally real submanifold in72"+1(c), we also have (for example, see [7])

ApyX = —ph(X,Y) = AgxY, Ae=0. (6)
g((X,Y),¢Z) = g(h(X, Z), Y). )

3. Ricci tensor of C-totally real submanifolds

We will need the following algebraic lemma due to Chen [2].

Lemma3.l. Letay, ..., a,, c ben + 1 (n > 2) real numbers such that
2
(Za,) n—121 <Za —|—c> (8)
Then2aia2 > ¢, with equality holding if and only iy + a2 = a3z =--- = a,.

For aC-totally real submanifold/” of M2"+1(c), we have

Theorem 3.1. If M" is aC-totally real submanifold o#72"+1(¢), then the Ricci tensor of
M" satisfies

n—L(+3) 2
s (NI ) ©

and the equality holds identically if and only if eith&" is totally geodesic on = 2 and
M" is totally umbilical.

Proof. From Gauss’ equation (4), we have

_ nn—1(c+3

2 +n?H? — |n|?. (10)
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PUts = p — “0=D+d _ 2 52 Then from (10) we obtain

n?H? = 2(5 + |h?). (11)
Let L be alinean — 1)-subspace of ,M", p € M", and{ey, ..., ean, €241 = £} @n
orthonormal basis such that (), . . ., e, are tangentta/”, (2)e1, ..., e,—1 € L and (3)

if H(p) # 0, e,+1is in the direction of the mean curvature vectopat
Puta; = k"™, i =1,...,n. Then from (11) we get

n 2m+1 n
(Za,) =2 8+Za +Y D+ DT Pt (12)
i=1

i=1 i#j r=n+2i,j=1

Equation (12) is equivalent to

3 2 2m+1 n
(Zai) =2 5+Za FYEEH Y Y hp? = Y aay g, (13)
i=1

i=1 i#j r=n+2i,j=1 2<i#j<n—1

whereay = ay,a2 =az + -+ -+ a,—1, az = a,.
By Lemma 3.1 we know that i{Z?:l a)? = 2(c + Zle Zzl.z), then Ziia, > ¢ with
equality holding if and only iti; + ap = az. Hence from (13) we can get

2m+1 n
Z ajaj > 8 + 22(h7/+l)2 + Z Z (h;j)29 (14)
1<i#j<n-1 i<j r=n+2i,j=1

which gives

nn—1)(c+3) g
- 2 n+1\2 2
f—i_ 2H >p— E a,'aj—}—ZE (hij+) + E E (h )°. (15)

1<i#j<n—1 i<j r=n+2i,j=1

Using Gauss’ equation we have

2m+1 n
p— Y wap+2) (WEHZ+ Y N (hr)?
I<i#j<n—1 i<j r=n+2i,j=1
(n—1(n—2)(c+3 n+1,2
= 25(€n, €n) + 4 + ZZ(]’lm )
2m+1 n—1 2
+ Y| @, )2+2Z(h’ 2+ |- (16)
r=n+2 j=1
From (15) and (16) we have
n—De+3  n? , 11y
g H = Slwmen+2) i

i<n

2m+1 n

n—1
+ | Do)+ ;h;j . @
p

r=n+2 | i=1
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So we have
-1 3 2
M+n—H225(€n, en) (18)
4 4
with equality holding if and only if

n—1
hj’n =0, h{n =0, Zhj/ = hfm (19)
j=1

forl<j<n-1,1<i<nandn+2<r <2m+ 1and, since Lemma 3.1 states that
2a1ap = c if and only if a; + az = az, we also havé+1 = Z;j h’j‘fl Sincee, can be
any unit tangent vector ai/”, then (18) implies inequality (9).

If the equality sign case of (9) holds identically, then we have

h?jﬂ:o (l<i##j<n),
hij=0 (1<i,j<mn+2=<r=<2m+1),
WFY=3"hgt Y b =0, (n+2<r<2m+1). (20)
ki ki
If A = h;’i“(l < i < n), we find Zk# M = A (1 <i < n) and, since the matrix

A = (ai(;.’)) with al.(j'.’) = 1— 2§;; is regular fom # 2 and has kerneR(1, 1) forn = 2,
we conclude thad” is either totally geodesic ar = 2 andM" is totally umbilical.
The converse is easy to prove. This completes the proof of Theorem 3.1.

4. Minimality of C-totally real submanifolds

Theorem 4.1. If M" is ann-dimensionalC-totally real submanifold in a Sasakian space
form M2*1(¢), then
n—D(c+3 n?

If M" satisfies the equality case (1) identically, thenM” is minimal

Clearly Theorem 4.1 follows immediately from the following Lemma.

Lemmad.l. If M" is ann-dimensional totally real submanifold in a Sasakian space form
M?2"+1(¢), then we have2l). If a C-totally real submanifold/” in M2"+1(c) satisfies the
equality case of21) at a pointp, then the mean curvature vectérat p is perpendicular

to ¢ (T, M™).

Proof. Inequality (21) is an immediate consequence of inequality (9).

Now let us assume that” is aC-totally real submanifold o#72"+1(¢) which satisfies
the equality sign of (21) at a poipt € M". Without loss of the generality we may choose
an orthonormal basig, ..., ¢,} of T,M" such thaRic(p) = S(e,, &,). From the proof
of Theorem 3.1, we get

n—1
hs, =0, thizh;n, i=1...n—Ls=n+1...2n+1 (22
i=1
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where i}, denote the coefficients of the second fundamental form with respect to the
orthonormal basi¢es, ..., e,} and{e,+1, . .., eont1 = &}

If for all tangent vectors, v andw at p, g(h(u, v), pw) = 0, there is nothing to prove.
So we assume that this is not the case. We define a funggiday

foi TIM" > R: v f(v) = g(h(v, v), pv). (23)

SinceT,M" is a compact set, there exists a veatoe 7 M" such thatf, attains an
absolute maximum at. Thenf,(v) > 0 andg(h(v, v), ¢w) = O for all w perpendicular
tov. Sofrom (5), we know that is an eigenvector ady,. Choose aframgey, e, .. ., e,}
of T, M" suchthat; = v ande; be an eigenvector ofy,, with eigenvalue.;. The function
fi,i = 2, defined byf; (t) = f,(cost ey + sintep) has relative maximum at= 0, so
f{"(0) < 0. This will lead to the inequality; > 24;. Sincer; > 0, we have

Ai 75 A, A1 > Z)xi, i>2. (24)

Thus, the eigenspace df;., with eigenvaluei, is 1-dimensional.
From (22) we know thag, is a common eigenvector for all shape operatorg.aOn
the other hand, we havg # +e¢, since otherwise, from (22) andiy,, e, = £Ag.,e1 =
+tApeei = rjejle, (i =2,...,n), weobtaim; =0,i =2,...,n;and hence.y =0
by (22), which is a contradiction. Consequently, without loss of generality we may assume
e1=¢e1,...,e, = ée,.
By (6), Age,e1 = Ageren = Ane,. Comparing this with (22) we obtaiy, = 0. Thus,
by applying (22) once more, we get+ - - - +A,—1 = A, = 0. Therefore, tracd 4., = 0.
Foreach =2, ..., n, we have

W = g(Agesens en) = g(Agey @iy en) = h2".

Hence, by applying (22) again, we gkt = 0. Combining this with (22) yields
traceAy,, = 0. So we have tracéy,y = O for anyX e T,M". Therefore, we con-
clude that the mean curvature vectopas perpendicular tg (7, M").

Remarlkd.1. From the proof of Lemma 4.1 we know thaMf" is aC-totally real subman-
ifold of M2t1(c) satisfying

— (n—=D(c+3 n? 5

Ric= ————— + —H?, 25

PR (25)
then M" is minimal andA4, = 0 for any unit tangent vector satisfyifv, v) = Ric.
Thus, by (6) we haveiy,xv = 0. Hence, we obtain(v, X) = 0 for any X tangent to
M" and anyv satisfyingS(v, v) = Ric. Conversely, ifM" is a minimalC-totally real
submanifold ofé72+1(c) such that for eaclp € M" there exists a unit vectar e T, M"
such that:(v, X) = 0 forall X € T,M", then it satisfies (25) indentically.
For eachp € M", the kernel of the second fundamental form is defined by

D(p) ={Y € T,M"|h(X,Y) =0,VX € T,M"}. (26)

From the above discussion, we conclude tifétis a minimalC-totally real submanifold
of M2"+1(¢) satisfying (25) ap if and only if dimD(p) is at least 1-dimensional.
Following the same argument as in [4], we can prove

Theorem 4.2. Let M" be a minimalC-totally real submanifold oM +1(¢). Then
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(1) M" satisfieq25)at a pointp if and only ifdimD(p) > 1.

(2) If the dimension oD(p) is positive constand, thenD is a completely integral distri-
bution andM" is d-ruled, i.e., for each poinp € M", M" contains ad-dimensional
totally geodesic submanifoll of M2*+1(¢) passing throughp.

(3) A ruled minimalC-totally real submanifoldi” of M%*+1(c) satisfieg24)identically
if and only if, for each rulingV in M", the normal bundlg’-M" restricted toN is a
parallel normal subbundle of the normal bundie- N along N .
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