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Abstract. Let Mn be a Riemanniann-manifold. Denote byS(p) andRic(p) the
Ricci tensor and the maximum Ricci curvature onMn, respectively. In this paper
we prove that everyC-totally real submanifold of a Sasakian space formM̄2m+1(c)

satisfiesS ≤ (
(n−1)(c+3)

4 + n2

4 H 2)g, whereH 2 andg are the square mean curvature
function and metric tensor onMn, respectively. The equality holds identically if and
only if eitherMn is totally geodesic submanifold orn = 2 andMn is totally umbilical
submanifold. Also we show that if aC-totally real submanifoldMn of M̄2n+1(c)

satisfiesRic = (n−1)(c+3)
4 + n2

4 H 2 identically, then it is minimal.
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1. Introduction

Let Mn be a Riemanniann-manifold isometrically immersed in a Riemannianm-manifold
M̄m(c) of constant sectional curvaturec. Denote byg, R andh the metric tensor, Riemann
curvature tensor and the second fundamental form ofMn, respectively. Then the mean
curvature vectorH of Mn is given byH = 1

n
traceh. The Ricci tensorS and the scalar

curvatureρ at a pointp ∈ Mn are given byS(X, Y ) = ∑n
i=1〈R(ei, X)Y, ei〉 andρ =∑n

i=1 S(ei, ei), respectively, where{e1, . . . , en} is an orthonormal basis of the tangent
spaceTpMn. A submanifoldMn is called totally umbilical ifh, H andg satisfyh(X, Y ) =
g(X, Y )H for X, Y tangent toMn.

The equation of Gauss for the submanifoldMn is given by

g(R(X, Y )Z, W) = c(g(X, W)g(Y, Z) − g(X, Z)g(Y, W))

+ g(h(X, W), h(Y, Z)) − g(h(X, Z), h(Y, W)), (1)

whereX, Y, Z, W ∈ T Mn. From (1) we have

ρ = n(n − 1)c + n2H 2 − |h|2, (2)

where|h|2 is the squared norm of the second fundamental form. From (2) we have

ρ ≤ n(n − 1)c + n2H 2,

with equality holding identically if and only ifMn is totally geodesic.
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Let Ric(p) denote the maximum Ricci curvature function onMn defined by

Ric(p) = max{S(u, u)|u ∈ T 1
p Mn, p ∈ Mn},

whereT 1
p Mn = {v ∈ TpMn|〈v, v〉 = 1}.

In [3], Chen proves that there exists a basic inequality on Ricci tensorS for any subman-
ifold Mn in M̄m(c), i.e.

S ≤
(

(n − 1)c + n2

4
H 2
)

g, (3)

with the equality holding if and only if eitherMn is a totally geodesic submanifold orn = 2
andMn is a totally umbilical submanifold. And in [4], Chen proves that every isotropic

submanifoldMn in a complex space formM̄m(4c) satisfiesRic ≤ (n − 1)c + n2

4 H 2,
and every Lagrangian submanifold of a complex space form satisfying the equality case
identically is a minimal submanifold. In the present paper, we would like to extend the
above results to theC-totally real submanifolds of a Sasakian space form, namely, we
prove that everyC-totally real submanifold of a Sasakian space formM̄2m+1(c) satisfies

S ≤ (
(n−1)(c+3)

4 + n2

4 H 2)g, and the equality holds identically if and only if eitherMn is
totally geodesic submanifold orn = 2 andMn is totally umbilical submanifold. Also we
show that if aC-totally real submanifoldMn of a Sasakian space form̄M2n+1(c) satisfies

Ric = (n−1)(c+3)
4 + n2

4 H 2 identically, then it is minimal.

2. Preliminary

Let M̄2m+1 be an odd dimensional Riemannian manifold with metricg. Let φ be a (1,1)-
tensor field,ξ a vector field, andη a 1-form onM̄2m+1, such that

φ2X = −X + η(X)ξ , φξ = 0 , η(φX) = 0 , η(ξ) = 1 ,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ) , η(X) = g(X, ξ).

If, in addition,dη(X, Y ) = g(φX, Y ), for all vector fieldsX, Y on M̄2m+1, thenM̄2m+1

is said to have a contact metric structure(φ, ξ, η, g), andM̄2m+1 is called a contact metric
manifold. If moreover the structure is normal, that is if [φX, φY ]+φ2[X, Y ]−φ[X, φY ]−
φ[φX, Y ] = −2dη(X, Y )ξ, then the contact metric structure is called a Sasakian structure
(normal contact metric structure) and̄M2m+1 is called a Sasakian manifold. For more
details and background, see the standard references [1] and [8].

A plane sectionσ in TpM̄2m+1 of a Sasakian manifold̄M2m+1 is called aφ-section if
it is spanned byX andφX, whereX is a unit tangent vector field orthogonal toξ . The
sectional curvaturēK(σ) with respect to aφ-sectionσ is called aφ-sectional curvature.
If a Sasakian manifoldM̄2m+1 has constantφ-sectional curvaturec, M̄2m+1 is called a
Sasakian space form and is denoted byM̄2m+1(c).

The curvature tensor̄R of a Sasakian space form̃M2m+1(c) is given by [8]

R̃(X, Y )Z = c + 3

4
(g(Y, Z)X − g(X, Z)Y )

+ c − 1

4
(η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ),



Sasakian space forms 401

for any tangent vector fieldsX, Y, Z to M̄2m+1(c).
An n-dimensional submanifoldMn of a Sasakian space form̄M2m+1(c) is called a

C-totally real submanifold ofM̄2m+1(c) if ξ is a normal vector field onMn. A direct
consequence of this definition is thatφ(T Mn) ⊂ T ⊥Mn, which means thatMn is an
anti-invariant submanifold of̄M2m+1(c). So we haven ≤ m.

The Gauss equation implies that

R(X, Y, Z, W) = 1

4
(c + 3)(g(Y, Z)g(X, W) − g(X, Z)g(Y, W))

+ g(h(X, W), h(Y, Z)) − g(h(X, Z), h(Y, W)), (4)

for all vector fieldsX, Y, Z, W tangent toMn, whereh denotes the second fundamental
form andR the curvature tensor ofMn.

Let A denote the shape operator onMn in M̄2m+1(c). ThenA is related to the second
fundamental formh by

g(h(X, Y ), α) = g(AαX, Y ), (5)

whereα is a normal vector field onMn.
ForC-totally real submanifold inM̄2m+1(c), we also have (for example, see [7])

AφY X = −φh(X, Y ) = AφXY, Aξ = 0. (6)

g(h(X, Y ), φZ) = g(h(X, Z), φY ). (7)

3. Ricci tensor ofC-totally real submanifolds

We will need the following algebraic lemma due to Chen [2].

Lemma3.1. Leta1, . . . , an, c ben + 1 (n ≥ 2) real numbers such that(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + c

)
. (8)

Then2a1a2 ≥ c, with equality holding if and only ifa1 + a2 = a3 = · · · = an.

For aC-totally real submanifoldMn of M̄2m+1(c), we have

Theorem 3.1. If Mn is aC-totally real submanifold ofM̄2m+1(c), then the Ricci tensor of
Mn satisfies

S ≤
(

(n − 1)(c + 3)

4
+ n2

4
H 2
)

g, (9)

and the equality holds identically if and only if eitherMn is totally geodesic orn = 2 and
Mn is totally umbilical.

Proof. From Gauss’ equation (4), we have

ρ = n(n − 1)(c + 3)

4
+ n2H 2 − |h|2. (10)
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Putδ = ρ − n(n−1)(c+3)
4 − n2

2 H 2. Then from (10) we obtain

n2H 2 = 2(δ + |h|2). (11)

Let L be a linear(n − 1)-subspace ofTpMn, p ∈ Mn, and{e1, . . . , e2m, e2m+1 = ξ} an
orthonormal basis such that (1)e1, . . . , en are tangent toMn, (2) e1, . . . , en−1 ∈ L and (3)
if H(p) 6= 0, en+1 is in the direction of the mean curvature vector atp.

Putai = hn+1
ii , i = 1, . . . , n. Then from (11) we get

(
n∑

i=1

ai

)2

= 2


δ +

n∑
i=1

a2
i +

∑
i 6=j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij )

2


 . (12)

Equation (12) is equivalent to(
3∑

i=1

āi

)2

= 2


δ +

3∑
i=1

ā2
i +

∑
i 6=j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij )

2 −
∑

2≤i 6=j≤n−1

aiaj


 , (13)

whereā1 = a1, ā2 = a2 + · · · + an−1, ā3 = an.
By Lemma 3.1 we know that if(

∑3
i=1 āi )

2 = 2(c + ∑3
i=1 ā2

i ), then 2̄a1ā2 ≥ c with
equality holding if and only if̄a1 + ā2 = ā3. Hence from (13) we can get

∑
1≤i 6=j≤n−1

aiaj ≥ δ + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij )

2, (14)

which gives

n(n − 1)(c + 3)

4
+ n2

2
H 2 ≥ ρ −

∑
1≤i 6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij )

2. (15)

Using Gauss’ equation we have

ρ −
∑

1≤i 6=j≤n−1

aiaj + 2
∑
i<j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij )

2

= 2S(en, en) + (n − 1)(n − 2)(c + 3)

4
+ 2

∑
i<n

(hn+1
in )2

+
2m+1∑
r=n+2


(hr

nn)
2 + 2

n−1∑
i=1

(hr
in)

2 +

n−1∑

j=1

hr
jj




2

 . (16)

From (15) and (16) we have

(n − 1)(c + 3)

4
+ n2

4
H 2 ≥ S(en, en) + 2

∑
i<n

(hn+1
in )2

+
2m+1∑
r=n+2


 n∑

i=1

(hr
in)

2 +

n−1∑

j=1

hr
jj




2

 . (17)
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So we have

(n − 1)(c + 3)

4
+ n2

4
H 2 ≥ S(en, en) (18)

with equality holding if and only if

hs
jn = 0, hr

in = 0,

n−1∑
j=1

hs
jj = hs

nn (19)

for 1 ≤ j ≤ n − 1, 1 ≤ i ≤ n andn + 2 ≤ r ≤ 2m + 1 and, since Lemma 3.1 states that
2ā1ā2 = c if and only if ā1 + ā2 = ā3, we also havehn+1

nn = ∑n−1
j=1 hn+1

jj . Sinceen can be
any unit tangent vector ofMn, then (18) implies inequality (9).

If the equality sign case of (9) holds identically, then we have

hn+1
ij = 0 (1 ≤ i 6= j ≤ n),

hr
ij = 0 (1 ≤ i, j ≤ n; n + 2 ≤ r ≤ 2m + 1),

hn+1
ii =

∑
k 6=i

hn+1
kk ,

∑
k 6=i

hr
kk = 0, (n + 2 ≤ r ≤ 2m + 1). (20)

If λi = hn+1
ii (1 ≤ i ≤ n), we find

∑
k 6=i λk = λi(1 ≤ i ≤ n) and, since the matrix

A(n) = (a
(n)
ij ) with a

(n)
ij = 1 − 2δij is regular forn 6= 2 and has kernelR(1, 1) for n = 2,

we conclude thatMn is either totally geodesic orn = 2 andMn is totally umbilical.
The converse is easy to prove. This completes the proof of Theorem 3.1.

4. Minimality of C-totally real submanifolds

Theorem 4.1. If Mn is ann-dimensionalC-totally real submanifold in a Sasakian space
form M̄2n+1(c), then

Ric ≤ (n − 1)(c + 3)

4
+ n2

4
H 2. (21)

If Mn satisfies the equality case of(21) identically, thenMn is minimal.

Clearly Theorem 4.1 follows immediately from the following Lemma.

Lemma4.1. If Mn is ann-dimensional totally real submanifold in a Sasakian space form
M̄2m+1(c), then we have(21). If aC-totally real submanifoldMn in M̄2m+1(c) satisfies the
equality case of(21) at a pointp, then the mean curvature vectorH at p is perpendicular
to φ(TpMn).

Proof. Inequality (21) is an immediate consequence of inequality (9).
Now let us assume thatMn is aC-totally real submanifold ofM̄2m+1(c) which satisfies

the equality sign of (21) at a pointp ∈ Mn. Without loss of the generality we may choose
an orthonormal basis{ē1, . . . , ēn} of TpMn such thatRic(p) = S(ēn, ēn). From the proof
of Theorem 3.1, we get

hs
in = 0,

n−1∑
i=1

hs
ii = hs

nn, i = 1, . . . , n − 1; s = n + 1, . . . , 2m + 1, (22)
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wherehs
ij denote the coefficients of the second fundamental form with respect to the

orthonormal basis{ē1, . . . , ēn} and{ēn+1, . . . , ē2m+1 = ξ}.
If for all tangent vectorsu, v andw atp, g(h(u, v), φw) = 0, there is nothing to prove.

So we assume that this is not the case. We define a functionfp by

fp : T 1
p Mn → R : v 7→ fp(v) = g(h(v, v), φv). (23)

SinceT 1
p Mn is a compact set, there exists a vectorv ∈ T 1

p Mn such thatfp attains an
absolute maximum atv. Thenfp(v) > 0 andg(h(v, v), φw) = 0 for all w perpendicular
tov. So from (5), we know thatv is an eigenvector ofAφv. Choose a frame{e1, e2, . . . , en}
of TpMn such thate1 = v andei be an eigenvector ofAφe1 with eigenvalueλi . The function
fi , i ≥ 2, defined byfi(t) = fp(cos t e1 + sin t e2) has relative maximum att = 0, so
f ′′

i (0) ≤ 0. This will lead to the inequalityλ1 ≥ 2λi . Sinceλ1 > 0, we have

λi 6= λ1, λ1 ≥ 2λi, i ≥ 2. (24)

Thus, the eigenspace ofAφe1 with eigenvalueλ1 is 1-dimensional.
From (22) we know that̄en is a common eigenvector for all shape operators atp. On

the other hand, we havee1 6= ±ēn since otherwise, from (22) andAφei
ēn = ±Aφei

e1 =
±Aφe1ei = ±λiei⊥ēn (i = 2, . . . , n), we obtainλi = 0, i = 2, . . . , n; and henceλ1 = 0
by (22), which is a contradiction. Consequently, without loss of generality we may assume
e1 = ē1, . . . , en = ēn.

By (6), Aφene1 = Aφe1en = λnen. Comparing this with (22) we obtainλn = 0. Thus,
by applying (22) once more, we getλ1 +· · ·+λn−1 = λn = 0. Therefore, traceAφe1 = 0.

For eachi = 2, . . . , n, we have

hn+i
nn = g(Aφei

en, en) = g(Aφenei, en) = h2n
in .

Hence, by applying (22) again, we gethn+i
nn = 0. Combining this with (22) yields

traceAφei
= 0. So we have traceAφX = 0 for anyX ∈ TpMn. Therefore, we con-

clude that the mean curvature vector atp is perpendicular toφ(TpMn).

Remark4.1. From the proof of Lemma 4.1 we know that ifMn is aC-totally real subman-
ifold of M̄2n+1(c) satisfying

Ric = (n − 1)(c + 3)

4
+ n2

4
H 2, (25)

thenMn is minimal andAφv = 0 for any unit tangent vector satisfyingS(v, v) = Ric.
Thus, by (6) we haveAφXv = 0. Hence, we obtainh(v, X) = 0 for anyX tangent to
Mn and anyv satisfyingS(v, v) = Ric. Conversely, ifMn is a minimalC-totally real
submanifold ofM̄2n+1(c) such that for eachp ∈ Mn there exists a unit vectorv ∈ TpMn

such thath(v, X) = 0 for all X ∈ TpMn, then it satisfies (25) indentically.
For eachp ∈ Mn, the kernel of the second fundamental form is defined by

D(p) = {Y ∈ TpMn|h(X, Y ) = 0, ∀X ∈ TpMn}. (26)

From the above discussion, we conclude thatMn is a minimalC-totally real submanifold
of M̄2m+1(c) satisfying (25) atp if and only if dimD(p) is at least 1-dimensional.

Following the same argument as in [4], we can prove

Theorem 4.2. LetMn be a minimalC-totally real submanifold ofM̄2n+1(c). Then
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(1) Mn satisfies(25)at a pointp if and only ifdimD(p) ≥ 1.

(2) If the dimension ofD(p) is positive constantd, thenD is a completely integral distri-
bution andMn is d-ruled, i.e., for each pointp ∈ Mn, Mn contains ad-dimensional
totally geodesic submanifoldN of M̄2n+1(c) passing throughp.

(3) A ruled minimalC-totally real submanifoldMn of M̄2n+1(c) satisfies(24) identically
if and only if, for each rulingN in Mn, the normal bundleT ⊥Mn restricted toN is a
parallel normal subbundle of the normal bundleT ⊥N alongN .
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