期刊论文详细信息
Proceedings Mathematical Sciences
Periodic and Boundary Value Problems for Second Order Differential Equations
Nikolaos S Papageorgiou2  Francesca Papalini1 
[1] Department of Mathematics, University of Ancona, Via Brecce Bianche, Ancona 0, Italy$$;Department of Mathematics, National Technical University, Zografou Campus, Athens 0, Greece$$
关键词: Upper solution;    lower solution;    order interval;    truncation map;    penalty function;    Caratheodory function;    Sobolev space;    compact embedding;    Dunford–Pettis theorem;    Arzela–Ascoli theorem;    extremal solution;    periodic problem;    Sturm–Liouville boundary conditions.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

In this paper we study second order scalar differential equations with Sturm–Liouville and periodic boundary conditions. The vector field 𝑓(𝑡, 𝑥, 𝑦) is Caratheodory and in some instances the continuity condition on 𝑥 or 𝑦 is replaced by a monotonicity type hypothesis. Using the method of upper and lower solutions as well as truncation and penalization techniques, we show the existence of solutions and extremal solutions in the order interval determined by the upper and lower solutions. Also we establish some properties of the solutions and of the set they form.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506517ZK.pdf 152KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:8次