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Abstract. In this paper we study second order scalar differential equations with
Sturm-Liouville and periodic boundary conditions. The vector field f(z,x,y) is
Caratheodory and in some instances the continuity condition on x or y is replaced by a
monotonicity type hypothesis. Using the method of upper and lower solutions as well
as truncation and penalization techniques, we show the existence of solutions and
extremal solutions in the order interval determined by the upper and lower solutions.
Also we establish some properties of the solutions and of the set they form.
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1. Introduction

The method of upper and lower solutions offers a powerful tool to establish the existence
of multiple solutions for initial and boundary value problems of the first and second order.
This method generates solutions of the problem, located in an order interval with the
upper and lower solutions serving as bounds. In fact the method is often coupled with a
monotone iterative technique which provides a constructive way (amenable to numerical
treatment) to generate the extremal solutions within the order interval determined by the
upper and lower solutions.

In this paper we employ this technique to study scalar nonlinear periodic and boundary
value problems. The overwhelming majority of the works in this direction, assume that
the vector field is continuous in all variables and they look for solutions in the space
C?(0,b). We refer to the books by Bernfeld-Lakshmikantham [2] and Gaines—-Mawhin
[6] and the references therein. The corresponding theory for discontinuous (at least in the
time variable 7) nonlinear differential equations is lagging behind. It is the aim of this
paper to contribute in the development of the theory in this direction. Dealing with
discontinuous problems, leads to Caratheodory or monotonicity conditions and to
Sobolev spaces of functions of one variable. It is within such a framework that we will
conduct our investigation in this paper. We should mention that an analogous study for
first order problems can be found in Nkashama [18].
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2. Sturm-Liouville problems

Let T =[0,b]. We start by considering the following second order boundary value
problem:

(Box)(0) = vp, (B1x)(b)

Here (Box)(0) = apx(0) — cox’(0) and (Bix)(b) = a1x(b) + ¢1¥'(b), with a, co,ay,
c1 >0 and ag(aib + ¢1) + coay # 0. Note that if ¢co = ¢; = vy = v; = 0, then we have
the Dirichlet (or Picard in the terminology of Gaines—Mawhin [6]) problem. The vector
field (¢, x, y) is not continuous, but only a Caratheodory function; i.e. it is measurable in
t € T and continuous in (x,y) € R x R (later the continuity in y will be replaced by a
monotonicity condition). Hence x”(-) is not continuous, but only an L'(T)-function.
Recently Nieto—Cabada [17] considered a special case of (1) with f independent of y.
Also there is the work of Omari [19] where f is continuous.

We will be using the Sobolev spaces W'!(T) and W>!(T). It is well known (see for
example Brezis [3], p. 125), that W!"!(T) is the space of absolutely continuous functions
and W>!(T) is the space of absolutely continuous function whose derivative is absolutely
continuous too.

{—MW)Tf@M)JUD eonT}, (1)

DEFINITION

A function 1 € W*!(T) is said to be a ‘lower solution’ for problem (1) if

{ —y' (1) < f(dmxwo»aeonT}_ )
(Bov)(0) < vo, (Biy)(b) < v

A function ¢ € W>!(T) is said to be an ‘upper solution’ for problem (1) if the inequalities
in (2) are reversed.

For the first existence theorem we will need the following hypotheses:
H(f),: f: T x Rx R — R is a function such that

(i) for every x,y € R, t — f(¢,x,y) is measurable;
(i) for every t € T, (x,y) — f(t,x,y) is continuous;
(iii) for every r > 0 there exists , € L'(T) such that |f(¢,x,y)| < 7,(¢) a.e. on T for all
x,y € R with [x],]y| < r.

Hy: There exists an upper solution ¢ and a lower solution 1 such that t(¢) < ¢(¢) for
every 1 € T and there exists h € C(R,, (0,00)) such that |f(z,x,y)| < h(|]y|) forallt € T
and all x,y € R with ¥(1) <x < ¢(r) and [* h’d’ > maxyer ¢(t) — miner 1(2), with
N\ = maX[Id’(O)*tD(l;)\1\w(b)f¢(0)\] .

Remark. The second part of hypothesis Hy (the growth condition on f), is known as the
‘Nagumo growth condition’ and guarantees an a priori L®-bound for x'(-). More
precisely, if Hy holds, then there exists N; > 0 (depending only on ¢, v, h) such that for
every x € W>!(T) solution of —x"(t) = f(t,x(t),x(t)) a.e. on T with ¥(t) < x(t) < ()
for all 7 € T, we have |x'(r)| < N; for all # € T (the proof of this, is the same (with minor
modifications) with that of Lemma 1.4.1, p. 26 of Bernfeld—Lakshmikantham [2]).
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We introduce the order interval K = [, ¢] = {x € W'(T) : 4(t) < x(t) < () for all
t € T} and we want to know if there exists a solution of (1) within the order interval K.
Also we are interested on the existence of the least and the greatest solutions of (1) within
K (‘extremal solutions’). The next two theorems solve these problems. In theorem 1 we
prove the existence of a solution in K and in theorem 2 we prove the existence of
extremal solutions within K. Although the hypotheses in both theorems are the same, we
decided to present them separately for reasons of clarity, since otherwise the proof would
have been too long.

Theorem 1. If hypotheses H(f), and Hy hold, then problem (1) has a solution x € W1
(T) within the order interval K = 1, ¢].

Proof. As we already mentioned in a previous remark, the Nagumo growth condition (see
Hy) implies the existence of Ny > 0 (depending only on 1, ¢, h) such that |x'(¢)| < N; for
all f €T, for every x € W>!(T) solution of (1) belonging in K. Set N = 1 + max
{NL Y| o5 1|@]] o }- Also define the truncation operator 7: WH(T) — WHI(T) by

< x(
T(x)(1) =< x(r) if (1) < x(r) < (1)
it x(r) <

The fact that 7(x) € WH!(T) can be found in Gilbarg-Trudinger [8] (p. 145) and we
know that
¢'(t) if (1) < x(1)
T(x)' (1) = X(1) if () < x(f) < ()
P(r) if x(r) < Y(r)

Also we define the truncation at N function gy € C(R) by

N if N<x
gn(x) = x if =N<x<N
—-N if x<-N

and the penalty function u : 7 X R — R by

Then we consider the following Sturm—Liouville problem

{ —x'(t) = f(t,7(x) (1), qn(7(x)' (1)) — u(t,x(t)) a.e. on T } 3)
(Box)(0) = 1, (B1x)(b) = 11

Denote by S the solution set of (3).

Claim # 1. S C K = [¢, ¢]. Let x € S. Then we have
—x"(t) = f(t,7(x) (1), gn (T(x)'(2))) — u(t, x()) a.e. on T. (4)
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Also since ¢ € W2!(T) is a lower solution of (1), we have
V() > —f(,¢(0),¢'(1))  ae onT. (5)
Adding (4) and (5), we obtain
Y1) = x"(1) 2 f(e,7(x)(1), qn (7(x)'(1)))
— f(t,9(),'(t)) — u(t,x(t))  ae.onT.

Multiplying with (¢ — x)_ (¢) and integrating over T = [0, b], we have
b
| @0 - -, o
b
> [0, av(r ) = 50600/ 0)

b
(¢ —x), (1)dt — /0 u(t, x(1)) (¢ — x) . (1)dr. (6)

From the integration by parts formula (Green’s identity), we have

/ W0 - ) - ), )
= W= DB -0, () — (& — KO — ), 0)
- [ om0 )
Using the boundary conditions for x and ¢ at # = 0, we have
ap(0) — o’ (0) < vy = apx(0) — cox’(0)
= —co(#/(0) — ¥(0)) < ~a(v(0) - x(0)).

If ¢o=0, then ¥(0) <x(0) and so (¢ —x), (0)=0. Therefore —(¢' —x")(0)
(¥ —x).(0)=0.

If >0, then —(¥/(0) = ¥'(0)) < =2 ((0) —x(0)) = —(¢/(0) —=+'(0)) (¢ — x)
(0) < =2 (¥(0) —x(0))(¥ — x),.(0). Thus if ((0) —x(0)) > 0, we have —(¢/ —x)(0)
(v — ) (00) <0 and if (4(0)-x(0)) <0, we have (¢ —x),(0)=0 and so
—(¢ = ¥')(0)(¢ — x) . (0) = 0. Therefore we always have

(' = x)(0)(¥ — x),(0) <0, (8)
From the boundary condition at t = b, we have

a1(b) + e (b) < 11 = anx(b) + 1 (b)
= (W (b) — X (b)) < a1 ((b) — x(b)).

Then arguing as above, we infer that

W' = x)(B)(¥ —x),.(b) < 0. 9)
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Finally recall that

iy J@=x)() if x(r) <)
(=) (’)_{ 0 if x(t) > ()

(see Gilbarg—Trudinger [8], p. 145). Hence it follows that

b
/ (W — X)) (& — ), (1)di = / [ — ) (e > 0. (10)
0 {x<y}

Using (8), (9), (10) in (7), we deduce that

b
/0 (& — ) (0) (% — x), (1)t < 0. (1)

Also note that
/ob[f (1, 7(6) (1), an (72 (1)) = (23600, 0/ () = ). (1)
B /{w} (1, 7)), (7 () () = £ (1,600, ()] (0 = x) (1)l
= [ Fas00) - b0 v Olw-n0a =0 2)

since on the set {r € T : x(¢) < (1)}, we have 7(x)(¢) = (¢) and 7(x)'(t) = ¢/(¢). Using
(11) and (12) in (6), we have that

0< /0‘7 u(t, x(1)) (¢ — x) . (1)dt = /{xsw} u(t,x(1)) (¢ — x)(r)dt

_ /b —(@—x)2(1)dr <0
0

(recall the definition of u(z,x)). So 1(r) < x(¢) for all € T. In a similar way we show
that x(¢) < ¢(¢) for all ¢ € T. Therefore S C K as claimed.

Claim # 2. S is nonempty. This will be proved by means of Schauder’s fixed point
theorem. To this end let D = {x € W>!(T) : (Byx)(0) = 1, (B1x)(b) =11} and let
L:D CLY(T) — L'(T) be defined by Lx = —x" for every x € D. First note that for every
h € L'(T) the boundary value problem

—x"(t) +x(t) = h(t) ae.on T
{ (Box)(0) = 1o, (B1x)(b) =11 } (13)

has a unique solution x € W*!(T). Indeed uniqueness of the solution is clear. For the
existence, note that if # € C(T), then it follows from corollary 3.1 of Monch [15]. In the
general case, let & € L'(T) and take h, € C(T) such that h, — hin L'(T) as n — oo. For
each h,, n > 1, the solution x,(-) of (13) is given by x,(¢) = u(t) + fob G(t,s)(xa(s)—
h,(s))ds, where u € C*(T) is the unique solution of x”(t) =0 t € T, (Box)(0) = vy,
(B1x)(b) = vy and G(t,s) is the Green’s function for the problem x” =g(z) t €T,
(Box)(0) = 0, (B1x)(b) =0 for g € C(T) given. From the proof of corollary 3.1 (b) of
Ménch [15], we know that sup,- ||x||o, < sup,sy||mall., Where n, € C*(T) is the
unique solution of 7 (f) = —h,(t) t € T, (Bon)(0) = |vol, (Bin)(b) = |v1|. We know that
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(1) = u( fo s)ds and so it follows that sup, - ||7.||,, < co. Hence {x,},,
is bounded in C(T ) Smce —xl(t) = hy(t) —xu(2), t €T, it follows that {2}, 1s
uniformly integrable. From Brezis [3] (p. 132) we know that the norm || - ||W2_1§7~ is
equivalent to the norm ||x|| = ||x||, + ||x"||,- Therefore {x} ., is bounded in W* 8T)
Since W>!(T') embeds continuously in C'(7’) and compactly in L' (T) and by the Dunford—
Pettis compactness criterion, by passing to a subsequence if necessary, we may assume that
X, — x in CY(T) (hence x,(r) — X'(¢) for all t € T), x,, — x in L'(T) and x” 2y in L'(T)
as n — oo. Evidently y = x”. So in the limit as n — oo, we have —x"(¢) + x(r) = h(z) a.e
on T, (Box)(0) = vy, (B1x)(b) = vy. Therefore we have proved that R(I + L) = L'(T).
Next let x;,x, € D and x = x; — x,. Define

T, ={reT:x(t)>0} and T_={reT:x(t) <0}

both open sets in 7. For A > 0 we have

/ [x(t) = X"(e)|de > [ |x(2) — M (2)|de + [ |x(r) — A" (2)|de

T, T_

> [ =) [t -
:/T x(t)dt_/n x(t)dt—)\/T x”(t)dt+/\/T7x”(t)dt
_ /0 ’ |x(t)|dt—)\[ /T 0= /T x”(t)dt].

Let (a,c) be a connected component of T.. Then x(a) = x(c) = 0 and x(¢) > 0 for all
t € (a,c). Thus ¥'(a) >0 and x'(c) <0 and from this it follows that [ x"(r)dr =
x (c) — x'(a) < 0. Therefore we deduce that fT "(r)dr < 0. Similarly we show that
Jr X" (t)dr > 0. So finally we have —A[[, x"(z )dt — f "(t)dt] > 0 and thus we obtain

/0 (1) — (1) [dr > / [x(1)]de

= [lx1 4+ ALxy — (x2 + ALxo) ||} > [|x1 — xa|;-

This last inequality together with the fact that R(I + L) = L'(T), implies that (I + L)™'
L'(T) — D C L'(T) is well-defined and nonexpansive (is the resolvent of the m-accretive
operator L; see Vrabie [21], Lemma 1.1.5, p. 20). For k > 0 consider the set

={xeD:|lxll, + [K"[l, < &}.

Recalling that ||x||; + ||x”||; is an equivalent norm on W*!(T) see Brezis [3], p. 132), it
follows that T'; is bounded in W?!(T) and since the latter embeds compactly in L' (T), we
conclude that T is relatively compact in L' (7). So from Vrabie [21] (Proposition 2.2.1, p.
56), we have that (I + L)~ is a compact operator. If C C L'(T) is bounded and u € C, let
x = (I+ L) "(x). Then —x” + x = u and from what we proved we have

[l < 11 =" + x|, < sup[lfull, - u € C] = |C| < o0.

So ||¥”||, < 2|C| and thus we conclude that (I 4+ L)~'(C) is bounded in W>(T). Since
the latter embeds compactly in W"!(T), we infer that (I + L)' (C) is relatively compact
in WhI(T). Moreover, if u, — u in L'(T) as n — oo and x, = (I + L) ' (,), then
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Xy — x = (I+ L) "(u) in L'(T) as n — oo (recall that (I + L)' is continuous on L' (T))
and {x,}, ., is bounded in W!(T). Exploiting the compact embedding of W>!(T) in
WL(T), we have that x, — x in W(T), ie. (I + L)™' : L'(T) — D € W"!(T) is conti-
nuous, hence a compact operator.

Now let H : WH(T) — L'(T) be defined by

H@) () = f( () () an((x) (1)) = (- x()) +x().

We will show that H(-) is bounded and continuous. Boundedness is a straightforward
consequence of hypothesis H(f), (iii) and of the definition of the penalty function u(r, x).
So we need to show that H(-) is continuous. To this end let x, — x in W'!(T) as n — oo.
By passing to a subsequence if necessary, we may assume that x,(¢) — x(¢) and
X (1) — x'(t) a.e. on T as n — oco. Hence we have 7(x,,)(f) — 7(x)(¢) for every t € T and
an(7(x,)' (1)) — qn(7(x)(t)) a.e. on T as n — oc. Note that {x,},., is bounded in C(T)
(since W"!(T) embeds continuously in C(T)) and so by virtue of hypotheses H(f),, the
continuity of u(z, -) and the dominated convergence theorem, we have that H(x,) — H(x)
in L'(T) as n — oo and so we have proved the continuity of H : W'(T) — LY(T).

Then consider the operator (I +L)'H : W'(T) — W'(T). Evidently this operator
is continuous (in fact compact), (I + L) 'H(D) C D and (I + L) 'H(D) is compact in
WUI(T) (since for every x € WHI(T), ||H(x)||, < k* with k* = |||, + bmax{||8]| .,
[4]] .} and r = max{||9||.,||¥|l.., N})- Since D C WhI(T) is closed, convex, we can
apply Schauder’s fixed point theorem (see Gilbarg—Trudinger [8], Corollary 10.2, p. 222),
to obtain x = (I + L) 'H(x). Then —x" + x = H(x), x € D; i.e. x € W*!(T) is a solution
of (3). This proves the nonemptiness of S.

To conclude the proof of the theorem, note that if x € S, then from claim # 1 we have
Y(t) < x(t) < ¢(¢) for all € T. So we have 7(x)(¢) = x(t), 7(x)'(¢) = x'(t) and u(t,
x(1)) = 0. Also recalling that |x'(¢)] < N for all ¢ € T, we also have that gy (x'(¢)) = X/ (¢).
Therefore finally

{ (1) = F(6x(),X()  ae. on T}
(Box)(0) = vo, (B1x)(b) = v

i.e., x € W2!(T) solves problem (1) and x € [, ¢].

Now we will improve the conclusion of theorem 1, by showing that problem (1) has
extremal solutions in the order interval K = [t, ¢]; i.e. there exist a least solution x, € K
and a greatest solution x* € K of (1), such that if x € W>!(T) is any other solution of (1)
in K, we have x,(t) < x(¢r) < x*(¢) for all r € T.

Theorem 2. If hypotheses H(f), and Hy hold, then problem (1) has extremal solutions in
the order interval K = [, ¢].

Proof. Let S| be the set of solutions of (1) contained in the order interval K = |4, ¢].

From theorem 1 we have that S| # ¢. First we will show that S, is a directed set (i.e. if

X1,x € Sy, then there exists x € Sy such that x;(¢) < x(¢) and x,(¢) < x(¢) for all r € T).

To this end let x;,x, € S; and let x3 = max{x,x,}. Since x;,x, € W>!(T), we have that

x3 € WHI(T) (see Gilbarg-Trudinger [8], Lemma 7.6, p. 145). Let 7 : Whi(T) —
WUI(T) be defined by
o(t) if (1) < x(1)

Te(xX) (1) = ¢ x(r) if  x(2) <x(r) < &(r) k=1,2,3.

xe (1) if x(t) < x(r)
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Also we introduce the penalty function u3 : T X R — R and the truncation function
gy R— R (N = 1 +max{Ny, [¢/||... ||¢/ll..}) defined by

x—¢(r) if () <x
usz(t,x) =< 0 if  x3(r) <x < (1)
x—x3(t) if x<x3(r)

and
N if N<x
gv(x) = ¢ x if - N<x<N.
—-N if x<-N

Then we consider the following boundary value problem:

2

—x" ()= f(t,73(x) (1), gn (73(x) (0))) + D 1f (8, 7 (2) (1), g () (1))

k=1

— f(t,73(x) (1), gn (73(x) (1)) ] — uz(t, x(1)) ae.onT
(B()x) (O) = 1, (le) b) =

(14)

Arguing as in the proof of theorem 1, we establish that problem (14) has a nonempty
solution set. We will show that this solution set is in the order interval [x3, ¢]. So let
x € WH(T) be a solution of (14). We have

Xy (1) *X"(l) = f(t, 3 (x) (1), qn (m3(x)' (1)) = f (1, x1(r), 2, (1))
+Z|f £, () (1), g (1 (x)' (1)) = £ (1, 73(x)(2), g (73 (x) (1))

— u3(t,x( )) aeonT.

Multiply with (x; — x), () and then integrate over T = [0, b]. Using the definition of the
truncation functions rk( = 1,2,3), gy and boundary conditions, we obtain

b
/ us(t,x(1))(xy — x), (1)dt > 0

= / x| — x =0 (recall the definition of u3)

=x(t) <x(t) forallzeT. a.e.on [.

In a similar way we show that x,(¢) < x(¢) and x(¢) < ¢(¢) for all ¢ € T. Therefore we
conclude that every solution x(-) € W*!(T) of (14) is located in the order interval [x3, ¢].
Hence 7;(x)(f) = x(t) and 7 (x)'(t) =¥'(¢) for all t€ T and all k € {1,2,3} and
uz(t,x(t)) = 0. Thus

{ —x"(t) = f(t,x(1),qn (X' (2))) a.e. on T}
(Box)(0) = v, (B1x)(b) = 11 '

As we already mentioned the Nagumo growth condition (see (Hp)) guarantees that
IX'(r)] < N for all 1 € T and so gy(x'(¢)) = x/(¢). Therefore x € S; and we have proved
that S; is a directed set.
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Now let C be a chain in S;. Then since C C L! (T), according to Dunford—Schwartz [5]
(Corollary IV.IL7, p. 336), we can find {x, },~, C C such that sup C = sup, x,. Then by
the monotone convergence theorem, we have that x, — x in L'(T) as n — oo and so
P(t) < x(t) < ¢(t) ae. on T. For every n > 1 we know that ||x,||., < max{||¢||..,
|¢]|} = ro and sup,~ ||x}]|.c < Ni. So if r = max{ry,N;}, by virtue of hypothesis
H(f), (iv) we have that ||x”(7)|| < 7,(¢) a.e. on T. Thus {x,},-, is bounded in W>!(T)
and {x/'},-, is uniformly integrable. So as before exploiting the compact embedding of
W2I(T) in WHI(T), the continuous embedding of W?!(T) in C!(T) and invoking the
Dunford-Pettis theorem, we may assume that x, — x in Wh(T), x,(t) — x(1), ¥, (1) —
X(t) for all €T and x” 5y in L'(T) as n — oc. It is easy to see that y = x” and
(Box)(0) = vy, (B1x)(b) = v1. Also from the dominated convergence theorem, we have
that —x"(-) = f(-,x(-),¥(:)) in L'(T). Hence —x"(t) = f(t,x(¢),x¥(t)) ae. on T,
(Box)(0) = vy, (B1x)(b) = v1. Thus x = sup C € §;. Using Zorn’s lemma, we infer that
S| has a maximal element x* € S;. Since §; is directed, it follows that x* is unique and is
the greatest element of S in [¢), ¢]. Similarly we can prove the existence of a least
solution x, of (1) in [¢, @]. Therefore (1) has extremal solutions in K = [, ¢).

3. Periodic problems

In this section, we focus our attention on the ‘periodic problem’:

(1) = f(6x(1),¥ (1) ae.onT
{x<0> = x(b), X(0) = X(b) } (15)

This problem was studied using the method of upper and lower solutions by Gaines—
Mawhin [6], Leela [14], Lakshmikantham-Leela [13], Nieto [16], Cabada—Nieto [4],
Omari-Trombetta [20] and Gao—Wang [7]. From these works only Gaines—Mawhin,
Cabada—Nieto, Omari—-Trombetta and Gao—Wang had a vector field depending also
on x' and moreover, among these papers only Cabada—Nieto and Gao-Wang used
Caratheodory type conditions on f(¢,x,y) with Lipschitz continuity in the y-variable in
Cabada—Nieto (see Theorem 2.2 in Cabada—Nieto [4]). Theorem 3 below extends
all these results. A similar result using a different method of proof, was obtained by
Gao—Wang [7].

DEFINITION

A function 1 € W*!(T) is said to be a ‘lower solution’ of (18) if

{ (1) < f(t,9(1),4/(r))  ae. on T}
$(0) = (b), ¥'(0) > 4/ (b) :

A function ¢ € W>!(T) is said to be an ‘upper solution” of (18) if it satisfies the
reverse inequalities.

Theorem 3. If hypotheses H(f), and Hy hold, then problem (18) has a solution
x € WHY(T) within the order interval K = [1, ¢|.

Proof. The proof is the same as that of theorem 1, with some minor modifications. Note
that in this case D = {x € W>'(T) : x(0) = x(b),¥'(0) = ¥'(b)} and L: D C L'(T) —
L'(T) is defined by Lx = —x" for all x € D. The rest of the proof is identical and only in
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the applications of the integration by parts formula (Green’s identity), we use the periodic
conditions instead of the Sturm-Liouville boundary conditions.

Next we look for the extremal solutions in the order interval [, @] of the periodic
problem (18). For this we introduce a different set of hypotheses on the vector field

[, x,y).
H(f),: f: T x R x R — R is a function such that

(i) for every x,y € R, t — f(t,x,y) is measurable;
(ii) there exists M > 0 such that for almost all 7€ T and all y € [-N,N], x —
F(t,x,y) + Mx is strictly increasing (recall that N = 1 + max{Ny, ||¢/||.o, ||1¢'l|s })s
(iii) there exists k € L'(T) such that | f(¢,x,y1) — f(t,x,y2)| < k(t)|y; — y2| a.e. on T for
all x,y;,y, € R;
(iv) for every r > 0, there exists 7, € L!(T) such that |f(z,x,y)| < 7,(¢) a.e. on T for all
x,y € R x|, [y <r.

Remark. Hypothesis H(f), (ii) allows for jump discontinuities (countably many) in the x—
variable. However note that for every x:7T — R measurable, ¢t — f(z,x(¢),y) is
measurable. This is an immediate consequence of Theorem 1.9, p. 32 of Appell-
Zabrejko [1]. Moreover since (¢,y) — f(t,x(¢),y) is a Caratheodory function, is jointly
measurable and so in particular superpositionally measurable; if y : T — R is measurable,
then so is r — f(z,x(2), y(2)).

Theorem 4. If hypotheses H(f), and Hy hold, then problem (18) has extremal solutions
in the order interval K = [, ¢].

Proof. Without any loss of generality, we may assume that M > 1. Then forany z € K =
[1), ], we consider the following periodic problem

{—X”(t)— S(1,2(0),an (7 (x)'(1))) — u(t, x(1)) + M(2(r) — x(1)) a.e. on T}.
x(0) = x(b), ¥'(0) = X'(b)

(16)

We will establish the existence of solutions for problem (18). So let D = {x € W>!
(T) : x(0) = x(b),x'(0) =x'(b)} and let L: D C L'(T) — L'(T) be defined by Lx =
—x" 4+ (M — 1)x. As in the proof of theorem 1, we can check that L is invertible and
L' LY(T) - D C WHI(T) is a compact, linear operator. Also as before we define
H:W'(T) — LY(T) by

H(x)(1) = f(t,2(t), qn(7(x)' (1)) — u(t,x(1)) — x(r) + Mx(1).

This map is bounded and continuous. Note that x € D solves (19) if and only if
x = L7 'H(x). As in the proof of theorem 1, the existence of a fixed point of L™'H is
implied by corollary 10.2, p. 222 of Gilbarg-Trudinger [8], since L~!(D) C D and
L~'H(D) is compact in W"!(T). So problem (19) has solutions.

Now we will show that any solution of (19) is within K = [¢), ¢]. Indeed we have:

W) = 2" (1) 2 f(1,2(0), qu (1(x) (1)) = f(1,90(0), 4/ (1))
—u(t, x(t ))+M(Z(E) x(r)) ae.onT

(% =x)(0) = (¥ = 2)(b), (¥ —x)'(0) = (¢ —x)'(b)
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Multiplying the above inequality with (¢ — x) , (¢) and integrating over T = [0, b] as in
the proof of theorem 2, using the definitions of r, gy and the boundary conditions for
and x, we obtain that

b b
0< [ uttx(o)w -0 = [ ()
b
)@ 0,0 =~ [ (=0, O
0
b
=0 [ [, 0l

= (1) < x(1) forallr e T.

In a similar fashion, we show that x(z) < ¢(¢) for all 7 € T. Therefore every solution
x € WHI(T) of (19) is located in K = [¢), ¢]. Thus recalling the definitions of 7(x), gy and
u, we see that —x”'(r) = f(z,z(¢t), X' (t)) + M(x(¢) — x(¢)) a.e. on T, x(0) = x(b), ¥'(0) =
¥'(b). Now we will show that this solution is unique. To this end, on L!(T’) we consider an
equivalent norm | - |, given by

x|, = /0 bexp(—)\ /O tk(s)ds) x()|dr, A > 0.

Similarly on W>!(T) we consider the equivalent norm given by
|x|271 =[x, + \x'|] + |XN‘1~

Suppose that x;,x, € W*!(T) are two solutions of (19). Then
x| = L;/Ho(xl) and x, = L;/Ho(xl),

where L' = (MI + L)™' with Lx = —x" for all x e D = {x € W2/(T) : x(0) = x(b),
X (0) =X (b)} and Ho(x)(-) = f(-,2(-),qn(7(x)'(-))). Recall that L;':LY(T) — D C
WUI(T) is linear compact. So Ly! : (L'(T),|-|,) — (W>!(T),| - |,,) is linear contin-
uous. Moreover, using hypotheses H(f), we can easily check as before that Hj :
(W>N(T),| - |,,) — (L'(T),] -1,) is continuous. Then we have

er = xalyy < 1Ly |1 21 Ho(x1) — Ho(x2),

— il bexp(—x / tk(s)ds) Ho ) (1) — Hole) (1)l
< le [ bexp(—A [ K618 )l o) - or
=3l [ w0 —sola(o (2 [ woas) )

b t
<5l [ exp<—A / k(s)ds)|xa'<r>—x;'<r>|dr

I, _
:XHLMIHL x/{_xle 1

So if A > ||L;!]|, we infer that x](f) = x(¢) a.e. on T. Hence x| (1) — x,(t) = ¢; for
all 1 €T, with ¢; € R. Since x}(0) = x| (b) and x5(0) = x5(b), from the mean value
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theorem, we deduce that there exists £ € (0,b) such that x| (§) = x4(§). Therefore ¢; =0
and so x| (1) = x5(¢) for all r € T, which implies that x, (#) — x2(t) = ¢, for all t € T, with
¢> € R. But for almost all t € T, we have

F(t,2(), qu(x (1)) + M(2(1) — x1(1) = f(t,2(1), gn (x5(1)))
+ M(z2(t) — x2(1))
=x1(t) =x1(t) + ¢, ae.onT; ie. c; =0 and so x; = x,.

Then define R : [, ¢] — [¢), ¢] where R(z)(-) is the unique solution of (19). We claim
that R(-) is increasing. Indeed let zj,2; € [, @], 71 < 22, 71 # 22 and set x; = R(z1),
X2 = R(z2). We have

—x{ (1) = f(t,21(2), gqn (X (1)) + M (21 (1) — x1(¢)) ae.onT
and

—x5 (1) = f(t,22(2), qn(x5(2))) + M(z2(t) — x2(1)) a.e. on T.

Suppose that max,cr[x; () — x2(¢)] = € > 0 and suppose that this maximum is attained
at tp € T. First we assume that 0 < #, < b. Then we have x/ (t9) = x}(#o) = 1y and we can
find 6 > 0 such that for every 7 € Ts = [y, to + 6] we have x»(¢) < x;(¢). So we obtain

—x{(t) = f(t, 21 (1), gn () (1)) + M (21 (1) — x:1 (1))
< St 22(1), an (%, (1)) + M(z2(1) = x2(1))
= f(t,22(1), g (x1(1))) + Mw(r)
a.e. on Ty, with w(t) = z(t) — x2(1),

and
—x5(t) = f(t,22(1), gn(x5(2))) + Mw(t) a.e. on Tp.

Since x| (o) = x5(t9) = vp, from a well-known differential inequality (see for example
Hale [9], theorem 6.1, p. 31), we obtain that 0 < x| (r) — x}(¢) for all t € T;. So after
integration we see that x; (z9) — x2(to) < x1(¢) — x»(¢) for every ¢ € T;. Since fy € T is the
point at which (x; — x»)(+) attains its maximum on 7, we have that x; () = x(¢) + ¢ for
every 1 € Ts and so x| (¢) = x,(¢) for every ¢t € Ts. Thus we have

0 =x{(t) —x3(1) = f(t,22(1), an (¥3(1))) — f (2, 22(1), an (1 (1)))
+ M(x(t) —x2(£)) >0 a.e. on T,

a contradiction.

Next assume 7y = 0. Then & = x;(0) — x2(0) > x;(h) — xp(h) for all h € [0,6] and
e =x1(b) — x2(b) > x1(h) — x2(h) for all h € [b—6,b]. From the first inequality we
infer that (x; —x;)'(0) <0 while from the second we have (x; —x,)'(b) > 0 and so
(x1 —x2)'(0) > 0. Therefore ¥, (0) = x5(0) = 14 and so we can proceed as in the previous
case and derive a contradiction. Similarly we treat the case #o = b. Therefore x; < x, and
so R(-) is increasing as claimed.

Now let {y,},~; be an increasing sequence in [, #]. Set x, = R(y,), n > 1. The
sequence {x,},-; C [, #] is increasing. From the monotone convergence theorem, we
have that y, —y and x, — x in L'(T) as n — oco. Also by hypothesis H(f), (iii),
Ix/(£)] < 7,(t) a.e. on T with r = max{N, ||¢]| .., ||¥]|..}, with 7, € L(T). So {x,},~, is
bounded in W!(T) and {x"}, -, is uniformly integrable. From the compact embedding of
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W2L(T) in W (T) and the Dunford—Pettis theorem, we have that x, — x in W!(T) and
at least for a subsequence we have x// LginL! (T) as n — oo. Clearly x” = g and so for
the original sequence we have x” - x” in L'(T) as n — oc. So finally x, — x in W2!(T).
Invoking theorem 3.1 of Heikkila—Lakshmikantham—Sun [10], we deduce that R(-) has
extremal fixed points in K = [t), ¢]. But note these extremal fixed points of R(-), are the
extremal solutions in K = [t, ¢] of the periodic problem (19).

Next we consider the situation where the vector field f is independent of x’. This is the
case studied by Nieto [16]. However here we are more general than Nieto, since the
dependence of f on x can be splitted into a continuous and a discontinuous part. So we
will be studying the following periodic problem:

—x"(1) = f(t,x(1),x(1)) ae.onT
{X(O) =x(b), X (0)=x'(b) } (17)

Hj: There exist ¢» € W>!(T) a lower solution and ¢ € W*!(T) an upper solution such
that (1) < ¢(z) forall t € T.

H(f);: f: T x R x R — R is a function such that

(i) for every y € W>!(T) and every x € R, t — f(t,x,y(t)) is measurable;
(ii) for almost all # € T and all y € R, x — f(¢,x,y) is continuous;
(iii) there exists M € L'(T), such that for almost all r € T and all x € [¢(z), ¢(1)],
y — f(t,x,y) + M(t)y is increasing;
(iv) for every r > 0 there exists v, € L'(T) such that if |f(z,x,y)| < v,(¢) a.e. on T for
all x,y € R with |x|,[y] < r.

Remark. The superpositional measurability hypothesis H(f), (i) is satisfied, if for every
x € R, there exists g, : T x R — R a Borel measurable function such that g.(t,y) =
f(t,x,y) for almost all 7€ T and all y € R. This follows from the monotonicity
hypothesis H(f), (iii) and theorem 1.9 of Appell-Zabrejko [1].

Theorem 5. If hypotheses H;, and H(f); hold, then problem (23) has a solution
x € WHN(T) in the order interval K = [1), ¢].

Proof. Let y €K = [th,¢] = {y € WHI(T) : ¢(t) < y(t) < ¢(t) for all t+€ T} and
consider the following periodic problem

="(1) = f(1,%(1),x(1)) + M(1)(y(t) = x(r)) ae.onT
{x(O) =x(b), ¥ (0) = x'(b) } (18)

Problem (24) has at least one solution in K (see Nieto [16]). By S(y) we denote the
solutions of (24) in K. Let y1,y, € K, y1 < y2, x1 € S(y1) and y; < x;. Consider the
following problem:

—x" (1) = f(t;71(t,x(1)), y2(2)) + M(2) (y2(2) — 71 (2,x(1)))

t
—ul(t,x(i)) ae.onT : (19)
x(0) = x(b), ¥ (0) =x'(b)

Here 71 : T x R — R (the truncation function) is defined by

o(t) if o(t) <x
1(t,x) = x if x(f) <x < (1)
x(r) if x<x(r)
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and u; : T x R — R (the penalty function) is defined by
x—¢(t) if o) <x

ui(t,x) = 0 if x(r) <x<or).
x—x(t) if x<x(r)

Both are Caratheodory functions. As before we let D = {x € W>!(T) : x(0) = x(b),
¥'(0) = ¥'(b)} and define L : D C L'(T) — L'(T) by Lx = —x” for all x € D. Again we
can check that L = (I + L) is invertible and L~! : L'(T) — D € WH(T) is compact.
Also H : WhI(T) — L(T) is given by

Hx)() = fCm(x0)),020))+ M) 2() = 1 x()) — i (5 x() + ()

This map is continuous and there exists k* > 0 such that ||H(x)||, < k* for all x € W!!
(T). So L~'H(D) is relatively compact in W"!(T) and thus we can apply corollary 10.2,
p. 222, of Gilbarg—Trudinger [8] and obtain x € D such that x = L~ 'H (x). Therefore
problem (25) has a solution.

Note that by virtue of hypothesis H(f), (iii) and the fact that 7 (7,x;(r)) = x;(z) and
ui(t,x1(¢)) = 0, we have

—x1 () = f(t;x(2),y

So x; € W»!(T) is a lower solution of (25). Similarly since y, < ¢, we have

{ —0"(1) 2 f(1,0(1), (1)) 2 f(1, 6(1), y2(1)) + M(y2(r) — 6(1)) ae. OHT}
$(0) = &(b), ¢,(0) < ¢'(b)

and so we see that ¢ € W>!(T) is an upper solution of (25).
Now we will show that the solutions of (25) are within the order interval K; = [x1, ¢].
Indeed we have

Xy (1) = x" (1) = (6, 71 (1,x(1)), y2(1)) + M(D)ya (1) = (1,21 (1), 31 (1))
= M)y (1) + M(2) (i (1) = 71 (2,x(2))) = w1 (2, x(2))

a.e.on 7.

Multiply the above equation with (x; —x)_ (-) and then integrate over 7 = [0, b]. As in
previous proofs we obtain

b
/ s (1, () (11 — %), (1)t > 0
= — / xXp —X), %dr > 0; e x (1) <x(t) forallteT.

¢(1) for all r € T. Therefore every solution of (25) is in
ecause of this fact, equation (25) becomes

Similarly we show that x(7)
the order interval K| = [x, ¢

I
{—X() f(,x(1), y2(1)) + M() (y2(1) — x(1)) a-e-onT}
x(0) = x(b), ¥'(0) = x'(b)

and so x € S(y2) and x; < x.

<
Be
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Next we will show that for every y € K = [1, ¢}, the set S(y) is compact in L'(T). To
this end let x € S(y). Then ||x||,, < max{||}||.,|[¢|} =r. Hence |[|x"(r)]| <
7,(t) + 2M(t)r a.e. on T. Hence S(y) is bounded in W>!(T) and since the latter embeds
compactly in L'(T), we have that S(y) is relatively compact in L!'(T). Then let
{x4},>1 € S(y) and assume that x, — x in L'(T) as n > oo. Since {x'},-, is uniformly
integrable, by passing to a subsequence if necessary we may assume that )Z,’ 5 gin LY(T)
as n — oo. Because W>!(T) embeds continuously in C!(T), {x/},-, is bounded in C(T)
and for all 0 < s <t <b and all n> 1, |x,(t) —x,(s)| < [ (%(7) +2M(7)r)dT from
which it follows that {x},., is equicontinuous. So by the Arzela—Ascoli theorem we
have that ¥, — x’ in C(T) as n — oo and so g = x”. Then via the dominated convergence
theorem, as before, we can check that

{ —x"(t) = f(t,x(2),y(t)) + M(t)(y(t) — x(t)) a.e. on T}
x(0) = x(b), ¥'(0) = ¥'(b) '

Hence x € S(y) and this proves that S(y) is closed, hence compact in L' (T). Since the
positive cone L'(T), = {x € L'(T) : x(r) > 0 a.e. on T} is regular (in fact fully regular;
see Krasnoselskii [12]), from proposition 2 of Heikkila—Hu [11], we infer that S(-) has a
fixed point in K; i.e. there exists x € K = [, ¢] such that x € S(x). Therefore

—x"(t) = f(t,x(1),x(r)) ae.onT
x(0) = x(b), x'(0) = x'(b)
and so problem (23) has a solution in K = [¢, ¢].

4. Properties of the solutions

For problems linear in X', we can say something about the structure of the solution set of
the periodic problem. Our result extends theorem 4.2 of Nieto [16].
The problem under consideration is the following:

—x"(1) = f(t,x(t)) + MX'(t) ae.onT (20)
x(0) = x(b), ¥'(0) =X (b). ‘
Our hypotheses on the vector field f(z,x) are the following:
H(f),: f: T x R — R is a function such that

(i) for every x € R, t — f(t,x) is measurable;
(ii) for almost all ¢ € T, x — f(z,x) is continuous and decreasing;
(iii) for every r > 0 there exists ~, € L>(T) such that |f(¢,x)| < ~,(¢) a.e. on T for all
xeR, x| <r

Remark. Under these hypotheses the Nagumo growth condition is automatically satisfied
since for k = max{||¢|| ., |||l }. we have | f(t,x) + My| < %(r) + M|y| a.e. on T for all
x € [(t), #(2)], and so if A(r) = |||, + Mr, we have for all

)\>O/ —dr:/ T =t
x h(r) r el +Mr

Theorem 6. If hypotheses Hy and H(f), hold and M > 0, then the solution set S of (30)
in K = [1), ¢| is nonempty, w-compact and convex in W>'(T).



122 Nikolaos S Papageorgiou and Francesca Papalini

Proof. From theorem 1 we know that S # ¢. Let x € S and define x(¢) = x(t) 1 0 x(r)dt
teT. Let Ty={x € R:X+c € S}. Note that Ty # ¢, since C*bfo (r)dr € Ty. We
claim that Ty is an interval. Indeed let ¢;,c; € Ty, ¢; < ¢, and take ¢ € (¢, ;). Set
y =Xx 4+ c. We have

—Y'(1) = =x"(1) = (1, + e1)(1)) + M(x + 1) (1)
= f(t,(x + c2)(t)) + M(% + c2)'(t) a.e. on T.

By hypothesis H(f), (ii), we have

Flb, G4 e) () = f3(0) = £, (G +e)(1)  aconT
= () = f(t.y(1) + My(1)  ae.on T,

Also it is clear that y(0) = y(b) and y'(0) = y'(b). Therefore y € S and so ¢ € Ty,
which proves that T} is an interval.
Next we will show that § = {X + ¢ : ¢ € Tp}. Indeed if v, x € S, then we have

("(1) =" () (x(1) — v(1))
= (f(t,v(1)) + MV () = f(t,x(t) — Mx' (1)) (x(t) — v(1))
= (F(6,v(0) = f(t,x(0))) (x(2) — (1)) + MV (1) = ¥'(1)) (x(2) — (1))
> M/ (1) — X (1)) (x(t) —v(t)) ae.onT.

Integrating over T = [0, b], we obtain
b b
[ o = vane - v = [0 - vy
0 0
b
> M/ (V' () — X' (1)) (x(t) — v(2))dt
:—M/ Jd(x — v)() = 0

= x'(t) =V (¢) forevery t €T
= (x — v)(:) = constant.

Soindeed S = {X + ¢ : ¢ € Ty} and since as we saw earlier T} is an interval, we deduce
that S is convex.

Finally we will prove that S is w-compact in W>!(T). To this end, let y € S. Then there
exists k € Ty such that y = & + k, hence [|y|[,, = |[x + k||, . Since y € K = [¢), ¢], w
bave. [k < max{[16]] + 104l |or 10ll + 11} = 7. Therefore 511, < (5], & bl
+I¥ My + [I¥7][; < [1%][,,; + bn and so S is bounded in W2L(T). We will show that S is
closed in W>!(T). Let {y,,}n>1 C S and assume that y, — y in W>!(T). We have

—/(t) = f(t,ya(t)) + My, (1) ae.onT, n>1. (21)

Since W>!(T) embeds continuously in C!(T), by passing to a subsequence if necessary,
we may assume that " (¢t) — y'(¢r) a.e.on T, y,(t) — y¥'(¢) and y,(t) — y(¢) forall t € T.
Sof(t,yu(t)) — f(t,y(¢)) a.e. on T. Thus passing to the limit as n — oo in (31), we obtain

=Y'(0) = f(t,y() + MY'(t) ae. onT, y(0) =y(b), y(0) =y (b)
=yes.
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So S is closed, hence weakly closed since it is convex. To show that S is weakly
compact in W*!(T), we need to show that given {x,},; C S, we can find a weakly
convergent subsequence. Since {x,},., is bounded in W>!(T) and the latter embeds
compactly in W!(T), by passing to a subsequence if necessary, we may assume that
X, — xin WH(T) asn — oo. Alsox” = %" and so || (¢)|| = ||x”(¢)|| a.e. on T. Therefore
by the Dunford-Pettis theorem, we may assume that x// L gin L'(T) and g = x". So
x € W2(T) and x,, = x in W2'(T). Since S is weakly closed in W*!(T), x € S and s0 S is
weakly compact in W2!(T).

In general if the vector field f is decreasing in the x-variable, then the upper and lower
solutions of the problem, as well as the solutions exhibit some interesting properties.

First we consider the general periodic problem (18), with the following hypotheses on
the vector field f(z,x,y).

H(f)s: f: T x R x R — R is a function such that

(i) for every x,y € R, t — f(t,x,y) is measurable;
(ii) for almost all € T and all y € R, x — f(¢,x,y) is strictly decreasing;
(iii) for all x,y,y € R |f(t,x,y) — f(t,x,y)| < k(t)[y —y'| a.e. on T with k € L'(T);
(iv) for every r > 0 there exists 7, € L!(T) such that |f(t,x,y)| < v,(t) a.e. on T for all
xy R, x|,y <r.

PROPOSITION 7

If H(f)5 holds, ¢ € W>'(T) is an upper solution and ¢ € W*'(T) a lower solution for
problem (18), then for all t € T, (1) < ¢(¢).

Proof. Suppose not. Let 7y € T be such that max,cr (¢ — ¢)(1) = (¢ — ¢)(to) =€ > 0.
First assume that 0 < #y < b. Then ¢//(ty) = ¢'(to) = v and we can find 6 > 0 such that
for all t € Ts = [to, 1o + 6], we have ¢(r) < 1(r). Then we have

— (1) S (00, (1) < f(1, 60, (1) ae. on Ty
and — ¢/'(t) > f(1,6(t),&/(1)) a.e.on T.

Consider the following initial value problem

{ —/(1) = f(1,0(),3(1))  ae. on Ty = lto,10+ 9] } (22)

y(to) = 1o

Because of hypothesis H(f)s (iii), problem (32) has a unique solution y € W!(T;).
Moreover, from the definitions of upper and lower solutions and a well-known differential
inequality (see Hale [9], p. 31), we infer that ¢'(¢) < y(¢) < ¢/(¢) for all r € Ts and so
() — ¢)'(t) > 0 for all ¢ € Ts. Integrating, we have (¢ — ¢)(to) < (v — ¢)(¢) for all
t € Ts. Recalling the choice of o, we see that (¢ — ¢)(¢) = constant for all 7 € Ts, hence
Y () = ¢/(¢) for all t € Ts. Thus for almost all ¢ € Ts, we have

—U'(1) <f(1,0(0), ¢/ (1) = f(t,6(t), ¢/ (1)) < =" (1),
a contradiction to the fact that (¢ — ¢)"(f) = 0 for all ¢ € Tj.

If 70 =0, then since (¢p— ¢)(0) = (¢ — ¢)(b), we can find 6§ >0 such that

(¥ —)(0) = (¥ = ¢)(r) >0 for all 1 € [0,6] and 0 < (¢ — §)(1) < (¢ — ¢)(b) for all
t € [b— 6,b]. From the first inequality we have that (v — $)'(0) < 0, while from the
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second it follows that (1) — ¢)'(b) > 0. But from the definitions of the upper and lower
solutions we have (1) — ¢)'(0) > (1) — ¢)'(b) > 0, therefore we conclude that 1/(0) =
¢'(0) = 1y and we can proceed as in the previous case.

The case ty) = b is treated in a similar fashion.

Our second observation concerning ¢, v, refers to problem (30) where the vector field
depends linearly in x'.

PROPOSITION 8

IfH(f), holds, » € W>(T) is an upper solution of (30), ¢» € W>(T) is a lower solution
of (30) and for all t € T ¢(r) < (1), then (v — ¢)(-) is constant.

Proof. By definition we have

— ") <f(t,() + MY/ (1) ae. on T, 9(0) = (b), ¢'(0)
—¢"(1) 2 f(t,6(1)) + MY (1) ae.onT, $(0) = ¢(b), ¢(0)

Hence we have
W) = ¢" (1) = f(1,6(0)) — f(t,9(1)) + M(& (1) = ¢/(r)) ae. onT.
Multiplying with (1) — ¢)(¢) and then integrating over T = [0, b], we obtain

¥ (b)
¢'(b).

>
<

b b
A(W—awmw—w@mzéom¢mw¢m¢@mw—@@m

b
+MA(d=M@wf@®m (23)

By Green’s formula, we have
b
| @ = a0w =)0 = - ¢ 0) - (6= 0/ 00)
b b
- [ 1w - oora <~ [ 1w - ool (24)
0 0
Also from hypothesis H(f), (ii) it follows that
/v () — )(1)dr > 0. (25)

Finally note that

b b
(AMwuwmmwwmw=—MA<W—w@W—@mm

b
=—MA(w—@mﬂ¢—@@=—Mw—¢W0+MW—¢MD=

(26)
Using (34), (35) and (36) in (33), we obtain

b
[ =ora <o
= /(1) =¢/'(t) forallte€T andso (»— ¢)(-) is constant.
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An immediate consequence of proposition 8, is the following result:

COROLLARY 9

If H(f), holds and x1,x, € W>'(T) are two solutions of (30) such that x(t) < x(t) for
allt € T, then (x; — x,)(+) is constant.
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