Proceedings Mathematical Sciences | |
Completely Monotone Multisequences, Symmetric Probabilities and a Normal Limit Theorem | |
J C Gupta1  | |
[1] Indian Statistical Institute, , SJS Sansanwal Marg, New Delhi 0 0, India Corresponding Address: , Mirdha Tola, Budaun 0, India$$ | |
关键词: Moment spaces; completely monotone multisequences; normal limit.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Let Gð‘›, 𑘠be the set of all partial completely monotone multisequences of order ð‘› and degree ð‘˜, i.e., multisequences ð‘ð‘›(ð›½1, ð›½2,$ldots$ ,ð›½k), ð›½1, ð›½2,$ldots$ ,ð›½ð‘˜ = 0, 1, 2,$ldots$ ,ð›½1 + ð›½2 + $cdots$ + ð›½ð‘˜ ≤ n, ð‘ð‘›(0,0,$ldots$ ,0) = 1 and $(-1)^{ð›½_0}ð›¥^{ð›½_0}$ ð‘ð‘›(ð›½1, ð›½2,$ldots$ ,ð›½ð‘˜)≥ 0 whenever ð›½0 ≤ ð‘›-(ð›½1 + ð›½2 +$cdots$ +ð›½ð‘˜) where 𛥠ð‘ð‘›(ð›½1, ð›½2,$ldots$ ,ð›½)=ð‘ð‘›(ð›½1+1, ð›½2,$ldots$ ,ð›½ð‘˜)+ ð‘ð‘›(ð›½1,ð›½2+1,$ldots$ ,ð›½ð‘˜)+$cdots$ + ð‘ð‘›(ð›½1, ð›½2,$ldots$ ,ð›½ð‘˜+1)-ð‘ð‘›(ð›½1,ð›½2,$ldots$ ,ð›½ð‘˜)$. Further, let $prod_{n,k}$ be the set of all symmetric probabilities on ${0, 1, 2,ldots ,k}^{n}$. We establish a one-to-one correspondence between the sets Gð‘›, 𑘠and $prod_{n, k}$ and use it to formulate and answer interesting questions about both. Assigning to Gð‘›, 𑘠the uniform probability measure, we show that, as 𑛠→ ∞, any fixed section {ð‘ð‘›(ð›½1, ð›½2,$ldots$ ,ð›½ð‘˜), 1 ≤ $sum ð›½ð‘–≤ ð‘š}, properly centered and normalized, is asymptotically multivariate normal. That is, $left{sqrt{left(inom{n+k}{k}ight)}(ð‘ð‘›(ð›½1, ð›½2,ldots ,ð›½ð‘˜)-c_0(ð›½1, ð›½2,ldots ,ð›½ð‘˜), 1≤ ð›½_1+ð›½2+cdots +ð›½_k≤ might}$ converges weakly to MVN[0,ð›´ð‘š]; the centering constants ð‘0(ð›½1, ð›½2,$ldots$ ,ð›½ð‘˜) and the asymptotic covariances depend on the moments of the Dirichlet $(1, 1,ldots ,1; 1)$ distribution on the standard simplex in ð‘…ð‘˜.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040506507ZK.pdf | 122KB | download |