期刊论文详细信息
Proceedings Mathematical Sciences
Inequalities for a Polynomial and its Derivative
V K Jain1 
[1] Mathematics Department, Indian Institute of Technology, Kharagpur 0, India$$
关键词: Inequalities;    zeros;    polynomial.;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

For an arbitrary entire function 𝑓 and any 𝑟 > 0, let $M(f, r):=max_{|z|=r}|f(z)|$. It is known that if 𝑝 is a polynomial of degree 𝑛 having no zeros in the open unit disc, and $m:=min_{|z|=1}|p(z)|$, then$$M(p',1)≤frac{n}{2}{M(p,1)-m},$$$$M(p, R)≤left(frac{R^n+1}{2}ight)M(p, 1)-mleft(frac{R^n-1}{2}ight), R>> 1.$$It is also known that if 𝑝 has all its zeros in the closed unit disc, then$$M(p', 1)≥frac{n}{2}{M(p, 1)+m}.$$The present paper contains certain generalizations of these inequalities

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040506489ZK.pdf 75KB PDF download
  文献评价指标  
  下载次数:11次 浏览次数:12次