Proc. Indian Acad. Sci. (Math. Sci.), Vol. 110, No. 2, May 2000, pp. 137-146.
© Printed in India

Inequalities for a polynomial and its derivative

V K JAIN
Mathematics Department, Indian Institute of Technology, Kharagpur 721 302, India
MS received 29 July 1999; revised 20 December 1999
Abstract. For an arbitrary entire function f and any r > 0, let M(f,r) := max;_,
| f(z)|. It is known that if p is a polynomial of degree n having no zeros in the open unit
disc, and m := miny,—; |p(z)|, then
n
M 1) <5 {M(p,1) —m),
R"+1 R'—1
R e IR G I

It is also known that if p has all its zeros in the closed unit disc, then

n
The present paper contains certain generalizations of these inequalities.
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1. Introduction and statement of results

Let p(z) be a polynomial of degree n. Concerning the estimate of |p’(z)| on the disc
|z] < 1, we have the following famous result known as Bernstein’s inequality [11].

Theorem A. If p(z) is a polynomial of degree n, then
M(p',1) < nM(p,1), (1.1)
with equality only for p(z) = az"

For polynomials having no zeros in |z| < 1, Erdos conjectured and Lax [5] proved

Theorem B. If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then
M(p'.1) <5M(p, 1), (12)

with equality for those polynomials, which have all their zeros on |z] = 1.
For polynomials having all their zeros in |z| < 1, Turan [12] proved

Theorem C. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then

“M(p.1), (1.3)

2

with equality for those polynomials, which have all their zeros on |z] = 1.

M(p',1) >

137



138 V K Jain

On the other hand, concerning the estimate of |p(z)| on the disc |z] < R,R > 1, we
have, as a simple consequence of maximum modulus principle [7].
Theorem D. If p(z) is a polynomial of degree n, then
M(p,R) < R'M(p,1), R>1, (1.4)
with equality for p(z) = az"
For polynomials not vanishing in |z] < 1, Ankeny and Rivlin [1] proved

Theorem E. If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then

R+ 1
M(p,R) < +

M(p1), R>1, (1.5)
with equality for p(z) = a + 7", |a| = |8}
In [3], we had used a parameter § and obtained the following generalizations of

inequalities (1.2), (1.5) and (1.3).

Theorem F. Let p(z) be a polynomial of degree n, having no zeros in |z| < 1. If

M(p,1) =1, then for |0 <1
pa| <5 {5+ 1+5} k=1 (16)

oo Aot

R>1, |g=1. (1.7
The result is best possible and equality holds in (1.6) and (1.7) for p(z) = « + 7", with
laf =l

Theorem G. If p(z) is a polynomial of degree n, having all its zeros in the closed unit
disc, then for |B] < 1

max|3p'(2) + 5 p(@)| > 5 {1+ Re(D}M(p,1). (18)
Aziz and Dawood [2] used
m = min |p(z)| (1.9)

|z]=1

to obtain certain refinements of inequalities (1.2), (1.5) and (1.3) and proved

Theorem H. If p(z) is a polynomial of degree n which does not vanish in |z| < 1, then
M(p' 1) < Z[M(p.1) =) (1.10)

M(p,R) < (Rn; l)M(p,l) - (an_ 1>m, R> 1. (1.11)

The result is best possible and equality holds in (1.10) and (1.11) for p(z) = az" + v,
with |a] < |v/.
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Theorem L If p(z) is a polynomial of degree n which has all its zeros in |z| < 1, then

M(p', 1) zg{M(p,l)—i—m}. (1.12)

The result is best possible and equality in (1.12) holds for p(z) = az" ++ |y] < |al.

In this paper, we have used a parameter 3, to obtain generalizations of inequalities
(1.10), (1.11) and (1.12), similar to the generalizations — namely Theorems F and G, of
inequalities (1.2), (1.5) and (1.3), obtained earlier by us. More precisely, we prove

Theorem 1. If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then for 3

with |6 < 1
mao' 0+ o0 | <5 (15} G Jmee v =145 )}
(1.13)
gMXMR@+ﬂ<5§i)p&ﬂS%{R"+ﬂ(5§i>
+‘1+5(R;1>H}MULU
m n" n"
_E{R"Jrﬁ(R%) —‘1+ﬁ(R%) } R>1. (1.14)

Equality holds in (1.13) and (1.14) for p(z) = A + uz" with |\| > |ul.

Theorem 2. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then for (3
with |8 < 1

w@+§ma

max
el=1

> 511+ Re(B)}M(p. 1) + ml{1 +Re(8)} ~[8]|]

(1.15)

Equality holds in (1.15) for p(z) = Cez",C > 0 and 3 > 0.

Remark 1. Theorem 1 is a refinement of Theorem F, it can be easily seen by observing
that

Bl |8
142 =12 <1
20 m<,
and
R+1\" R+1\"
R”+B(—;_> >’1+ﬁ(—;> <1 and R> 1L

Remark 2. Theorem 2 is a refinement of Theorem G.

2. Lemmas

For the proofs of the theorems, we require the following lemmas.
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Lemma 1. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then
n
P@I=3lp@] 2l =1

This lemma is due to Malik and Vong [6]. It suffices to observe that if p(z) =
cIl"_,(z — z,), then for |z| = 1, we have

R(ZE) -3 k(1) =5

Lemma 2. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then

. R+1\" .
Ip(Re”)| > (T) Ip(e)], R>1 and 0<0< 27

This lemma is due to Jain [4]. It was observed by Rivlin [10] that if f is a polynomial
of degree at most n such that f(z) # 0 in |z| < 1, then

Floe)] > (1—;”)"|f<e”>|, (0<p<1,0<0<2m)

Applying this result to the polynomial f(z) := z"p(1/z) with p := 1/R we obtain the
desired estimate.

Lemma 3. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then for
with |3 <1

1+

R" + ﬁ(%“)

Eﬂiﬂl 20'(2) + gp(Z)
p(Rz) + (%) '

Equality holds in (2.1) and (2.2) for p(z) = me" 7",m > 0.

> mn

(2.1)

B
2 )

min >m

7|=1

, R> 1. (2.2)

Proof of Lemma 3. If p(z) has a zero on |z| = 1, then inequalities (2.1) and (2.2) are
trivial. Therefore we assume that p(z) has all its zeros in |z| < 1. Then m > 0 and for «
with |a| < 1, we have

lamz"| <m < |p@)|, [ =1, (by(1.9)),
thereby implying by Rouché’s theorem that the polynomial
p1(z) = p(z) — amz’
has all its zeros in |z| < 1. On applying Lemma 1, we get
n
|2{p/(2) = amn'" 1} = Jp(z) —am?'|, |zl =1 and o] <1.

Therefore for |3] < 1 and || < 1, the polynomial

Ap'(2) — amnz '} 4 B2 {p() — am?"}
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i.e.

{ZPI(Z) + ?p(z)} - Olnmz”{l +§}

will have no zeros on |z| = 1. As |a| < 1, we have for  with |5] < 1

' (2) +?p(z) > nmz”(l +§> , 7l =1,
i.e.
2@+ p@)| = ma1 4 2] =1, (2.3)

For 3 with |3| = 1, (2.3) follows by continuity. And now, the inequality (2.1) follows.
On applying Lemma 2 to the polynomial p;(z), we get for R > 1 and |a| < 1

R+1\"
p(Re) - a2 = (“51) p(o) - ama|, =1
Therefore for || < 1 and |a| < 1, the polynomial
R+1

o) — iz 5(* 1) (o0 - e,

fono (5 ) mefr 21

will have no zeros on |z| = 1. As |a| < 1, we have for § with |5| < 1

i.e.

)+ 5(5 10 e = [ {re s (B[ =,
i.e.
p<Rz>+ﬂ(Rj1> p2) szuﬂ(le) CH=1,

and the inequality (2.2) follows. This completes the proof of Lemma 3.

Lemma 4. Let Q(z) be a polynomial of degree n, having all its zeros in |z| < 1 and S(z) be
a polynomial of degree not exceeding that of Q(z). If

S| < 106)] (2.4
for |z = L, then for any |B| < 1,

S'(@) | S@)|_ Q) 0k

B R (23)

forlzl =1
This lemma is due to Malik and Vong [6]. However, this result is contained in ([9],
Theorem 3.4) where it is shown that under the conditions of lemma 4,

1B.S(2)| < |B.Q(2)],  (Iz] = 1),
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for every B,-operator. It may be added that a linear operator 7', which carries polynomials
of degree at most » into polynomials of degree at most n, is called a B,-operator provided
that 7'[f] has all its zeros in the open unit disc if f is of exact degree n and has all its zeros
in the open unit disc.

Lemma 5. If p(z) is a polynomial of degree n, with M(p,1) = 1, then for |5] < 1 and

|2 =1
g B
< (H + ‘1 +5D,

q(z) = Z'p(1/2). (2.6)
This lemma is due to Rahman ([8], inequality (5.3)).

@@+ 40

* 2

7/ (2) + ?p(Z)

where

Lemma 6. Let Q(z) be a polynomial of degree n, having all its zeros in |z| < 1. If S(z) is a
polynomial of degree at most n such that

1S(2)| < 1Q()|, for |z =1, (2.7)
then for 8 with |5] < 1 and R > 1, we have

‘S(Rz) 4 ﬁ(RT“) 's(2) R+l

< otk + (") o0

=1. 2.
: CH=1 @)

This lemma is due to Jain [4].

Lemma 1. If p(z) is a polynomial of degree at most n such that M(p, 1) = 1, then for 3
with |B| < 1,R > 1 and |z] = 1

i) +5(" 1) p(o)

S’Hﬁ(RTH)

where q(z) is, as in lemma 5.
This lemma is due to Jain [4].

otk +5(5 ) gt

R+ ﬁ(R—er 1) .

+

Lemma 8. If p(z) is a polynomial of degree n, having all its zeros in |z| < 1, then for [
with |8] <1 and |z] =1,

() + 2 p(2)

This lemma is due to Jain ([3], Remark 2).

> 5 {1+ Re()} p()].

3. Proofs of the theorems

Proof of Theorem 1. If p(z) has a zero on |z| = 1, then Theorem 1 reduces to ([3],
Theorem 1). Therefore we assume that p(z) has all its zeros in |z| > 1 (i.e. m > 0). Now
for o with |a| < 1, we have

lam| <m < |p@)|, [l =1, (by (1.9)),
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thereby implying by Rouché’s theorem that the polynomial
p2(z) = p(z) —am

has no zeros in |z] < 1. Therefore the polynomial

¢2(2) = Z'p2(1/2)
=q(z) —amz", (by (2.6))

will have all its zeros in |z| < 1. Also

P2(2)] = lg2(2)], || = 1.
On applying Lemma 4, we get for |z| = I,

<

2q5(z) + @CD (z)

5(z) + i P2(2)

2 2 )
ie.
(@' +?‘D(Z)} —?am‘ < {Zq/(z) ‘*‘%Q(Z)} —Emnz”(l +§) )
laf <1,
ie.
Zp%z”?”@ _”mlalgé zq’(z)+?q(1) —Oz|mn1+§',
laf < 1. (3.1)

The polynomial g(z), given by (2.6) has all its zeros in |z| < 1 and

min|q(z) = min|p(z)] =m,  (by (1.9)).

And so, by Lemma 3 (inequality (2.1))

np

2q'(2) +—-4(2) b

min 14+=
lz|=1 2

> mn :

thereby allowing us to rewrite (3.1) as

@)+ @) - mala 2! < e 0) + 22 4()| - a1 + 2],
2 2 2 2
lzl=1 and |of <.
As |a| — 1, we get for |z] =1,
zp’(z)Jr@p(z) - zq’(z)Jr@q(z) < —mn 1+§ _|g . (3.2)
2 2 2 2
Now, by lemma 5, we have for |z] = 1,
Zp'(z)—k%p(z) + zq'(z)—l—?q(z) Sn(‘l +§‘ + gDM(p,l). (3.3)

Addition of inequalities (3.2) and (3.3) easily leads to inequality (1.13)
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On applying lemma 6 to the polynomials p;(z) and ¢»(z), we get for R > 1 and |z| = 1,

pz(Rz)+ﬁ(RT+l> P2(2)| < |g2(R2) JrB(R;r 1)

om0 o5 )
o2 o el o257

e +5(*31) b0 s
H (RZ)+6<R+1> q(z) R"+ﬁ(R+l)

o] < 1.  (34)

1.€.

»lal<t,

ie.

— mlal

—lalm

)

Further on applying lemma 3 (inequality (2.2)) to the polynomial ¢(z), we get for R > 1
+ 1 R+ 1\"
k) +5(* 1) 00| = [+ 5(25)

=m

min
|z]=1

min|q(z)l,

thereby allowing us to rewrite (3.4) as
R+1\"
‘p(RZ) + 8 (T) p(2)

<otk + (35 e

1+6<RJ2F]>

R+ ﬂ(R—er 1)

lz2l=1, R>1 and |a] <.

)

As |a] — 1, we get for [zl =1 and R > 1,

\pmz) +5(55) b0 - otk + 5(* 1) a2
" R+1 +1\"
ol oY) .
Now, by lemma 7, we have for |z =1 and R > 1,
i)+ 5(" 50 oo + ke + 5(* 5 ) 0t
< { R"+5(RT+1)H + 1+6(RT+1)n }M(p, 0. (3.6)

Addition of inequalities (3.5) and (3.6) easily leads to inequality (1.14). This also com-
pletes the proof of Theorem 1.
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Proof of Theorem 2. If p(z) has a zero on |z| = 1, then Theorem 2 reduces to ([3],
Remark 2). Therefore we assume that p(z) has all its zeros in |z] < 1. Now as in the proof
of lemma 3, for o with |«| < 1, the polynomial

pi(z) = p(z) —am

will have all its zeros in |z] < 1. On applying lemma 8, we get for « with |a| < 1 and
|2l =1,

(@) + 2 (p(2) — am}| 2 31+ Re(9)}le) - 37)
ie.
Q)+ 20|~ D] 2314 RNPEI - o). G

Further, by lemma 3 (inequality (2.1)), we have for |z] = 1.

n
Zp’(2)+7ﬂp( )‘ an1+§,
[E]
> 71
nm=—,
> ‘?am, for |a| <1,

thereby allowing us to rewrite (3.8) as

' (2) +?p(2)‘ - %

| 2 51+ Re(®)} (pa) ~ e,
lzl=1 and |a] < 1.

As |a| — 1, we get for |z] =1,

2@+ L0

> Z{1+ Re(8)}p(2)| + 5 (18] — {1 + Re(B)}),

2
thereby implying
max|3p'(2) + 3 p(2)| > 5 ({1 + Re(HIM(p, 1) + m]3] - {1+ Re(D)}).
(3.9)
Again, by (3.7), we have for || < 1 and |z| = 1,
p'(2) +%ﬂP(Z) + ‘?am‘ > g{l +Re(B) Hlp ()| + |aml}.

As |a| — 1, we get for |z] =1,

' (2) + ? p(z)

> Z{1+ Re(B)}p(2)| + 5 [{1 +Re(8)} — |3,
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thereby implying

np

p'(z) + P

max
lz|=1

>

({1 +Re(B)IM(p, 1) + m[{1 +Re(B)} —[]]).
(3.10)

[NSREN]

From (3.9) and (3.10), Theorem 2 follows.
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