期刊论文详细信息
Purinergic Signalling
Comparative genomic and expression analysis of the adenosine signaling pathway members in Xenopus
Alice Tocco2  Pierre Thiébaud2  Benoît Pinson1  Karine Massé2  Nadine Thézé2 
[1] IBGC UMR 5095 1$$IBGC UMR 5095 1$$;CIRID UMR 5164$$CIRID UMR 5164$$
关键词: Xenopus;   
DOI  :  10.1007/s11302-014-9431-6
学科分类:分子生物学,细胞生物学和基因
来源: Springer
PDF
【 摘 要 】

Adenosine is an endogenous molecule that regulates many physiological processes via the activation of four specific G-protein-coupled ADORA receptors. Extracellular adenosine may originate either from the hydrolysis of released ATP by the ectonucleotidases or from cellular exit via the equilibrative nucleoside transporters (SLC29A). Adenosine extracellular concentration is also regulated by its successive hydrolysis into uric acid by membrane-bound enzymes or by cell influx via the concentrative nucleoside transporters (SLC28A). All of these members constitute the adenosine signaling pathway and regulate adenosine functions. Although the roles of this pathway are quite well understood in adults, little is known regarding its functions during vertebrate embryogenesis. We have used Xenopus laevis as a model system to provide a comparative expression map of the different members of this pathway during vertebrate development. We report the characterization of the different enzymes, receptors, and nucleoside transporters in both X. laevis and X. tropicalis, and we demonstrate by phylogenetic analyses the high level of conservation of these members between amphibians and mammals. A thorough expression analysis of these members during development and in the adult frog reveals that each member displays distinct specific expression patterns. These data suggest potentially different developmental roles for these proteins and therefore for extracellular adenosine. In addition, we show that adenosine levels during amphibian embryogenesis are very low, confirming that they must be tightly controlled for normal development.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912040490305ZK.pdf 164KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次