期刊论文详细信息
FEBS Letters
The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei
Cronín, Ciaran N.1  Paul Voorheis, H.1  Nolan, Derek P.1 
[1] Department of Biochemistry, Trinity College, Dublin 2, Ireland
关键词: Pentose phosphate pathway;    Hexose monophosphate shunt;    NADPH;    Ribose 5-phosphate;    Gluconeogenesis;    Entner-Doudoroff pathway;    (Trypanosoma brucei);    TIM;    triosephosphate isomerase (EC 5.3.1.1);    G3PDH;    glycerol-3-phosphate dehydrogenase (EC 1.1.1.8);    TPP;    thiamine pyrophosphate;   
DOI  :  10.1016/0014-5793(89)81154-8
学科分类:生物化学/生物物理
来源: John Wiley & Sons Ltd.
PDF
【 摘 要 】

The specific activities of each of the enzymes of the classical pentose phosphate pathway have been determined in both cultured procyclic and bloodstream forms of Trypanosoma brucei. Both forms contained glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), ribose-5-phosphate isomerase (EC 5.3.1.6) and transaldolase (EC 2.2.1.2). However, ribulose-5-phosphate 3′-epimerase (EC 5.1.3.1) and transketolase (EC 2.2.1.1) activities were detectable only in procyclic forms. These results clearly demonstrate that both forms of T. brucei can metabolize glucose via the oxidative segment of the classical pentose phosphate pathway in order to produce d-ribose-5-phosphate for the synthesis of nucleic acids and reduced NADP for other synthetic reactions. However, only procyclic forms are capable of using the non-oxidative segment of the classical pentose phosphate pathway to cycle carbon between pentose and hexose phosphates in order to produce d-glyceraldehyde 3-phosphate as a net product of the pathway. Both forms lack the key gluconeogenic enzyme, fructose-bisphosphatase (EC 3.1.3.11). Consequently, neither form should be able to engage in gluconeogenesis nor should procyclic forms be able to return any of the glyceraldehyde 3-phosphate produced in the pentose phosphate pathway to glucose 6-phosphate. This last specific metabolic arrangement and the restriction of all but the terminal steps of glycolysis to the glycosome may be the observations required to explain the presence of distinct cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. These same observations also may provide the basis for explaining the presence of cytosolic hexokinase and phosphoglucose isomerase without the presence of any cytosolic phosphofructokinase activity. The key enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydratase (EC 4.2.1.12) and 2-keto-3-deoxy-6-phosphogluconate aldolase (EC 4.1.2.14) were not detected in either procyclic or bloodstream forms of T. brucei.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912020291604ZK.pdf 507KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:15次