| Bulletin of the Korean chemical society | |
| Simulation of Atom Focusing for Nanostructure Fabrication | |
| Chang Jae Lee1  | |
| 关键词: Atom lithography; Nanofabrication; Atom manipulation; Atom-laser interaction; | |
| DOI : | |
| 学科分类:化学(综合) | |
| 来源: Korean Chemical Society | |
PDF
|
|
【 摘 要 】
The light pressure force from an optical standing wave (SW) can focus an atomic beam to submicrometer dimensions. To make the best of this technique it is necessary to find a set of optimal experimental parameters. In this paper we consider theoretically the chromium atoms focusing and demonstrate that the focusing performance depends not only on the strength of but also on the time atoms take to traverse the force field. The general conclusions drawn can easily be applied to other atoms. To analyze the problem we numerically integrate a coupled time-dependent Schrodinger equation over a wide range of experimental parameters. It is found that an optimal atomic beam speed-laser intensity pair does exist, which could give substantially improved focusing over the one with the experimental parameters given in the literature. It is also shown that the widely used classical particle optics approach can lead to erroneous predictions.
【 授权许可】
Unknown
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201912010238913ZK.pdf | 540KB |
PDF