期刊论文详细信息
Bulletin of materials science
Structural and optical properties of Zn doped CuInS2 thin films
Mahdi H Suhail1 
[1] Department of Physics, College of Science, University of Baghdad, Iraq$$Department of Physics, College of Science, University of Baghdad, IraqDepartment of Physics, College of Science, University of Baghdad, Iraq$$
关键词: CuInS2;    doping;    structural properties;    optical properties;    copper compounds;    ternary semiconductors;    semiconductor epitaxial layers;    thin films solar cell;    optical constants.;   
DOI  :  
学科分类:材料工程
来源: Indian Academy of Sciences
PDF
【 摘 要 】

Copper indium sulphide (CIS) films were deposited by spray pyrolysis onto glass substrates from aqueous solutions of copper (II) sulphate, indium chloride and thiourea using compressed air as the carrier gas. The copper/indium molar ratio (Cu/In) in the solution 1(1:1) and the sulphur/copper ratio (S/Cu) was fixed at 4. Structural properties of these films were characterized. The effects of Zn (0�??5%)molecular weight compared with CuInS2 Source and different substrate temperatures on films properties were investigated using X-ray diffraction (XRD) and optical transmission spectra. Optical characteristics of the CuInS2 films have been analysed using spectrophotometer in the wavelength range 300�??1100 nm. The absorption spectra of the films showed that this compound is a direct bandgap material and gap values varied between 1.55 and 1.57 eV, depending on the substrate temperatures. Zn-doped samples have a bandgap energy of 1.55�??1.95 eV. It was observed that there is an increase in optical bandgap with increasing Zn % molecular weight. The optical constants of the deposited films were obtained from the analysis of the experimentally recorded transmission and absorption spectral data. The refractive index, n and dielectric constants, �?1 and �?2, were also discussed and calculated as a function of investigated wavelength range and found it dependent on Zn incorporation. We found that the Zn-doped CuInS2 thin films exhibit P-type conductivity and we predict that Zn species can be considered as suitable candidates for use as doped acceptors to fabricate CuInS2-based solar cells. The paper presents a study concerning the influence of deposition parameters (temperature of the substrate and concentration of Zn (1�??5)% from 0.16 M ZnCl2) on the quality of CuInS2 thin films achieved by spray pyrolysis on glass substrate from solutions containing 0.02 M CuCl2.2H2O, 0.16 M thiourea and 0.08 M In2Cl3.5H2O.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010229664ZK.pdf 825KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:16次