Journal of Nuclear Medicine | |
In Vivo Assessment and Dosimetry of 2 Novel PDE10A PET Radiotracers in Humans: 18F-MNI-659 and 18F-MNI-654 | |
Gilles Tamagnan1  Danna Jennings1  Timothy McCarthy1  Adriana Tavares1  David Alagille1  David Thomae1  Caroline Papin1  Olivier Barret1  David Russell1  Ken Marek1  Rikki Waterhouse1  John Seibyl1  | |
关键词: PDE10A; PET imaging; kinetic modeling; test–retest; dosimetry; | |
DOI : 10.2967/jnumed.113.122895 | |
学科分类:医学(综合) | |
来源: Society of Nuclear Medicine | |
【 摘 要 】
Phosphodiesterase (PDE) 10A is an enzyme involved in the regulation of cyclic adenosine monophosphate and cyclic guanosine monophosphate and is highly expressed in medium-sized spiny neurons of the striatum, making it an attractive target for novel therapies for a variety of neurologic and psychiatric disorders that involve striatal function. Potential ligands for PET imaging of PDE10A have been reported. Here, we report the first-in-human characterization of 2 new PDE10A radioligands, 2-(2-(3-(1-(2-fluoroethyl)-1H-indazol-6-yl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione (18F-MNI-654) and 2-(2-(3-(4-(2-fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione (18F-MNI-659), with the goal of selecting the best one for use in future studies interrogating pathophysiologic changes in neuropsychiatric disorders and aiding pharmaceutical development targeting PDE10A. Methods: Eleven healthy volunteers participated in this study (18F-MNI-654 test–retest, 2 men; 18F-MNI-659 test–retest, 4 men and 1 woman; 18F-MNI-659 dosimetry, 2 men and 2 women). Brain PET images were acquired over 5.5 h for 18F-MNI-654 and over 3.5 h for 18F-MNI-659, and pharmacokinetic modeling with plasma- and reference-region (cerebellar cortex)-based methods was performed. Whole-body PET images were acquired over 6 h for 18F-MNI-659 and radiation dosimetry estimated with OLINDA. Results: Both radiotracers were similarly metabolized, with about 20% of intact parent remaining at 120 min after injection. PET time–activity data demonstrated that 18F-MNI-654 kinetics were much slower than 18F-MNI-659 kinetics. For 18F-MNI-659, there was good agreement between the Logan and simplified reference tissue models for nondisplaceable binding potential (BPND), supporting noninvasive quantification, with test–retest variability less than 10% and intraclass correlation greater than 0.9. The 18F-MNI-659 effective dose was estimated at 0.024 mSv/MBq. Conclusion: PET imaging in the human brain with 2 novel PDE10A 18F tracers is being reported. Noninvasive quantification of 18F-MNI-659 with the simplified reference tissue model using the cerebellum as a reference is possible. In addition, 18F-MNI-659 kinetics are fast enough for a good estimate of BPND with 90 min of data, with values around 3.0 in the basal ganglia. Finally, 18F-MNI-659 dosimetry is favorable and consistent with values reported for other PET radiotracers currently used in humans.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010199251ZK.pdf | 802KB | download |