期刊论文详细信息
Journal of Nuclear Medicine
Performance of a Brain PET Camera Based on Anger-Logic Gadolinium Oxyorthosilicate Detectors
Gerd Muehllehner1  Margaret E. Daube-Witherspoon1  Suleman Surti1  Lars-Eric Adam1  Joel S. Karp1  Kilian Bilger1  Christopher A. Cardi1  Richard Freifelder1 
关键词: PET;    brain imaging;    gadolinium oxyorthosilicate;   
DOI  :  
学科分类:医学(综合)
来源: Society of Nuclear Medicine
PDF
【 摘 要 】

A high-sensitivity, high-resolution brain PET scanner (“G-PET”) has been developed. This scanner is similar in geometry to a previous brain scanner developed at the University of Pennsylvania, the HEAD Penn-PET, but the detector technology and electronics have been improved to achieve enhanced performance. Methods: This scanner has a detector ring diameter of 42.0 cm with a patient aperture of 30.0 cm and an axial field of view of 25.6 cm. It comprises a continuous light-guide that couples 18,560 (320 × 58 array) 4 × 4 × 10 mm3 gadolinium oxyorthosilicate (GSO) crystals to 288 (36 × 8 array) 39-mm photomultiplier tubes in a hexagonal arrangement. The scanner operates only in 3-dimensional (3D) mode because there are no interplane septa. Performance measurements on the G-PET scanner were made following National Electrical Manufacturers Association NU 2–2001 procedures for most measurements, although NU 2–1994 procedures were used when these were considered more appropriate for a brain scanner (e.g., scatter fraction and counting-rate performance measurements). Results: The transverse and axial resolutions near the center are 4.0 and 5.0 mm, respectively. At a radial offset of 10 cm, these numbers deteriorate by approximately 0.5 mm. The absolute sensitivity of this scanner measured with a 70-cm long line source is 4.79 counts per second (cps)/kBq. The scatter fraction measured with a line source in a 20-cm-diameter × 19-cm-long cylinder is 39% (for a lower energy threshold of 410 keV). For the same cylinder, the peak noise equivalent counting rate is 60 kcps at an activity concentration of 7.4 kBq/mL (0.20 μCi/mL), whereas the peak true coincidence rate is 132 kcps at an activity concentration of 14 kBq/mL (0.38 μCi/mL). Images from the Hoffman brain phantom as well as 18F-FDG patient scans illustrate the high quality of images acquired on the G-PET scanner. Conclusion: The G-PET scanner attains the goal of high performance for brain imaging through the use of an Anger-logic GSO detector design with continuous optical coupling. This detector design leads to good energy resolution, which is needed in 3D imaging to minimize scatter and random coincidences.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201912010195653ZK.pdf 967KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:4次