Journal of Mathematics and Statistics | |
Bivariate Poisson-Lindley Distribution with Application | Science Publications | |
Noriszura Ismail1  Pouya Faroughi1  Hossein Zamani1  | |
关键词: Bivariate; Poisson-Lindley; Dependent; Over-Dispersed; Count Data; | |
DOI : 10.3844/jmssp.2015.1.6 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Science Publications | |
【 摘 要 】
This study applies a Bivariate Poisson-Lindley (BPL) distribution for modeling dependent and over-dispersed count data. The advantage of using this form of BPL distribution is that the correlation coefficient can be positive, zero or negative, depending on the multiplicative factor parameter. Several properties such as mean, variance and correlation coefficient of the BPL distribution are discussed. A numerical example is given and the BPL distribution is compared to Bivariate Poisson (BP) and Bivariate Negative Binomial (BNB) distributions which also allow the correlation coefficient to be positive, zero or negative. The results show that BPL distribution provides the smallest Akaike Information Criterion (AIC), indicating that the distribution can be used as an alternative for fitting dependent and over-dispersed count data, with either negative or positive correlation.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912010160738ZK.pdf | 535KB | download |