期刊论文详细信息
American Journal of Engineering and Applied Sciences
Cross Validation Evaluation for Breast Cancer Prediction Using Multilayer Perceptron Neural Networks | Science Publications
Shirin A. Mojarad1  Wai L. Woo1  Gajanan V. Sherbet1  Satnam S. Dlay1 
关键词: Breast cancer;    k-fold cross validation;    Multilayer Perceptron (MLP);    predictive analysis;   
DOI  :  10.3844/ajeassp.2011.576.585
学科分类:工程和技术(综合)
来源: Science Publications
PDF
【 摘 要 】

Problem statement: The presence of metastasis in the regional lymph nodes is the most important factor in predicting prognosis in breast cancer. Many biomarkers have been identified that appear to relate to the aggressive behaviour of cancer. However, the nonlinear relation of these markers to nodal status and also the existence of complex interaction between markers have prohibited an accurate prognosis. Approach: The aim of this study is to investigate the effectiveness of a Multilayer Perceptron (MLP) for predicting breast cancer progression using a set of four biomarkers of breast tumors. The biomarkers include DNA ploidy, cell cycle distribution (G0G1/G2M), steroid receptors (ER/PR) and S-Phase Fraction (SPF). A further objective of the study is to explore the predictive potential of these markers in defining the state of nodal involvement in breast cancer. Two methods of outcome evaluation viz. stratified and simple k-fold Cross Validation (CV) are studied in order to assess their accuracy and reliability for neural network validation. Criteria such as output accuracy, sensitivity and specificity are used for selecting the best validation technique besides evaluating the network outcome for different combinations of markers. Results: The results show that stratified 2-fold CV is more accurate and reliable compared to simple k-fold CV as it obtains a higher accuracy and specificity and also provides a more stable network validation in terms of sensitivity. Best prediction results are obtained by using an individual marker-SPF which obtains an accuracy of 65%. Conclusion/Recommendations: Our findings suggest that MLP-based analysis provides an accurate and reliable platform for breast cancer prediction given that an appropriate design and validation method is employed.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300134187ZK.pdf 371KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:10次