期刊论文详细信息
Aquatic Microbial Ecology
Viruses, prokaryotes and biochemical composition of organic matter in different types of mucilage aggregates
Lucia Bongiorni Monica Armeni Cinzia Corinaldesi Antonio Dell’Anno Antonio Pusceddu Roberto Danovaro1 
关键词: Mucilage aggregates;    Biochemistry;    Prokaryotes;    Virus;    Adriatic Sea;   
DOI  :  10.3354/ame01126
学科分类:生物科学(综合)
来源: Inter-Research
PDF
【 摘 要 】

ABSTRACT: It has been hypothesised that several microbial processes contribute to mucilage formation and transformation. However, to date, none of these mechanisms have been consistently tested using different types of mucilage. We investigated the biochemical composition and the microbial activities occurring in 9 different types of mucilage aggregates (macroflocs, stringers, cobwebs, ribbons, stringers/cobwebs clouds, big creamy surface layer, false bottoms and anoxic false bottoms) collected during summer 2000, 2002 and 2003 in the Adriatic Sea. Larger and aged aggregates, characterized by the accumulation of carbohydrate and a low lipid fraction, displayed significant biochemical differences when compared with younger aggregates. Prokaryote abundance, C production and extracellular enzymatic activities increased from small to medium-sized aggregates (corresponding approximately to mid life span) while they decreased in larger (and aged) aggregates. The highest prokaryotic C production and enzymatic activities were coupled with highest viral abundance. In mucilage displaying the highest viral abundance a reduced incorporation of enzymatically degraded C into prokaryote biomass was observed. This result suggests a potential involvement of viruses in the impairment of the microbial loop functioning in marine aggregates. Applying a multivariate analysis to the microbial variables, 3 stages of mucilage life span can be identified: (1) an early stage characterized by a large prokaryote colonization of the aggregate and DOM accumulation; (2) a mature stage characterized by a decreased capability of incorporating degraded C into prokaryote biomass and high viral abundance and (3) an aged stage characterized by the decrease in both viral and prokaryote abundance and prokaryote activity. These results provide new insights into the microbial ecology of marine aggregates and the processes influencing their life span.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201911300101225ZK.pdf 146KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:12次