| International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
| EVALUATION OF CAMERA POSITIONS AND GROUND POINTS QUALITY IN A GNSS-NRTK BASED UAV SURVEY: PRELIMINARY RESULTS FROM A PRACTICAL TEST IN MORPHOLOGICAL VERY COMPLEX AREAS | |
| Casella, M.^31  Vanneschi, C.^22  Tufarolo, E.^13  | |
| [1] AeroDron s.r.l., Via Cremonese 35/A, 43126 Parma, Italy^3;CGT Spinoff s.r.l., Strada Provinciale delle Miniere, Polo Industriale di Bomba, 52022 Cavriglia, Italy^2;Department of Environment, Earth and Physical Sciences and Centre of Geotechnologies, University of Siena, Via Vetri Vecchi 34, 52027 San Giovanni Valdarno, Italy^1 | |
| 关键词: UAV; Network Real Time Kinematic; Photogrammetry; Structure-from-Motion; Open Pit Mine; Positional accuracy assessment; | |
| DOI : 10.5194/isprs-archives-XLII-2-W13-637-2019 | |
| 学科分类:地球科学(综合) | |
| 来源: Copernicus Publications | |
PDF
|
|
【 摘 要 】
Open pit mines localized in high mountains are probably one of the most complex environments for Structure-From-Motion (SfM) based photogrammetry. The case study presented in this paper refers to the realization of a detailed topographic mapping in the Torano marble basin (Apuan Alps, Italy) which needed, after decades of excavation activity, a new topographic survey.Given the requested very high resolution, the time constraints and safety-related problems, a photogrammetric approach by a fixedwing Unmanned Aerial Vehicle (UAV) was chosen to carry out thesurvey of the basin. In addition, given the morphological complexity of the area, characterized by extreme steep slopes more than hundreds of meters high, and the necessity to minimize the fieldwork without sacrificing the work quality, an UAV equipped with a L1/L2 Network Real Time Kinematic (NRTK) Global Navigation Satellite System (GNSS) was used.The scope of this work is to compare the accuracy of UAV derived 3D photogrammetric models realized with different approaches: by using traditional Ground Control Points (GCPs), by using the on-board Network Real Time Kinematic system for camera position detection, and a mix of both. At the end, we tested the quality of the models to verify the reachable levels of accuracy.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201911047146724ZK.pdf | 1985KB |
PDF