International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
USING DJI PHANTOM 4 RTK DRONE FOR TOPOGRAPHIC MAPPING OF COASTAL AREAS | |
Stecchi, F.^21  Taddia, Y.^12  | |
[1] AdriaRilievi, via Castel San Pietro 54, 48121 Ravenna, Italy^2;Engineering Department, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy^1 | |
关键词: UAV; direct georeferencing; on-board RTK; coastal mapping; Structure-from-Motion; | |
DOI : 10.5194/isprs-archives-XLII-2-W13-625-2019 | |
学科分类:地球科学(综合) | |
来源: Copernicus Publications | |
【 摘 要 】
Imagery acquisition systems by Unmanned Aerial Vehicles (UAVs) have been rapidly evolving within the last few years. In mapping applications, it is the introduction of a considerable amount of Ground Control Points (GCPs) that enables the final reconstruction of a real-scale framed model. Since the survey of GCPs generally requires the use of total stations or GNSS receivers in Real Time Kinematic (RTK), either with or without a Network approach (NRTK), this on-site operation is particularly time consuming. In addition, the lack of clearly image-recognizable points may force the use of artificial markers (signalised GCPs) whenever no features are naturally available in the field. This implies a real waste of time for the deployment of the targets, as well as for their recovery. Recently, aircrafts’ manufacturers have integrated the on-board RTK capability on their UAVs. In such a way, the high precision GNSS system allows the 3D position detection of the camera at the time of each capture within few centimetres. In this work, we tested the DJI Phantom 4 RTK for the topographic survey of a coastal section in the Northern Adriatic Sea (Italy). The flights were performed flying at an 80 m altitude to ensure a Ground Sample Distance (GSD) of about 2 centimetres. The site extended up to 2 kilometres longitudinally. The results confirm that the on-board RTK approach really speeds up the precise mapping of coastal regions and that a single GCP may be needed to make a reliable estimation of the focal length.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911046518054ZK.pdf | 3973KB | download |