ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | |
CLOUD DETECTION BY FUSING MULTI-SCALE CONVOLUTIONAL FEATURES | |
Qiangqiang Yuan^4,51  Qing Cheng^32  Zhiwei Li^13  Yancong Wei^24  Huanfeng Shen^1,55  | |
[1] Collaborative Innovation Center of Geospatial Technology, Wuhan, P. R. China^5;School of Geodesy and Geomatics, Wuhan University, Wuhan, P. R. China^4;School of Resource and Environmental Sciences, Wuhan University, Wuhan, P. R. China^1;School of Urban Design of Wuhan University, Wuhan University, Wuhan, P. R. China^3;State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, P. R. China^2 | |
关键词: Cloud detection; Deep learning; Convolutional feature fusion; Multi-scale; MSCN; | |
DOI : 10.5194/isprs-annals-IV-3-149-2018 | |
学科分类:地球科学(综合) | |
来源: Copernicus Publications | |
【 摘 要 】
Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201911045007222ZK.pdf | 1551KB | download |