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ABSTRACT: 

 

Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that 

deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for 

multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning 

based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional 

features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with 

different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud 

detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced 

more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it 

promising for practical application in multiple kinds of optical imagery.  

 

 

1. INTRODUCTION 

Cloud cover impedes optical satellites from obtaining clear views 

of the Earth's surface, and thus the existence of clouds influences 

the availability of useful satellite data. Accurately extracting 

clouds from cloud-contaminated imagery can help to reduce the 

negative influences that cloud coverage brings to the application 

of the imagery. Therefore, cloud detection in optical imagery is 

of great significance. 

 

In recent years, scholars have undertaken a great deal of research 

into cloud detection for different types of remote sensing data 

(Fisher, 2014; Li et al., 2017; Luo et al., 2008; Zhu and 

Woodcock, 2012). The traditional threshold-based cloud 

detection methods suffer from the problems of thin cloud 

omission and bright non-cloud object commission, especially for 

those images which have limited spectral information. To further 

improve the accuracy of cloud detection from single image, more 

spatial features such as geometric and texture features are 

combined with spectral features to enhance the diversity of 

clouds (Li et al., 2017). However, since most of cloud detection 

methods proposed in previous studies only used low-level 

spectral and spatial features, there are still rooms to promote 

cloud detection accuracy with the use of features at higher vision 

levels. 

 

Recent advances have proven deep learning a very successful set 

of tools (Zhu et al., 2017). Benefiting from the application of the 

deep convolutional features, deep learning based methods such 

as ResNet (He et al., 2016) achieves high accuracy for image 

analysis tasks, and the accuracy is continuously promoted with 

appearances of new techniques. Deep learning is taking off in 

remote sensing as well. Cloud detection methods based on deep 

learning gradually appeared in recent studies, which can be 

divided into three categories according to input and output of the 
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network: The first category is patch-label based approach, as for 

this approach, an image patch is used as the input of network, and 

the output is a label which denotes whether the image patch is 

cloudy (Gómez-Chova et al., 2017); The second category is 

region-label based approach, where the cloudy images are first 

segmented, then patches of different regions are labeled by the 

pre-trained network (Xie et al., 2017); The third category is pixel-

label based approach. This kind of approach trained an end-to-

end network, in which the input is an image patch of arbitrary 

size, while the output is a pixel-level labels which has same size 

of height and width as the input (Zhan et al., 2017). 

 

Aiming at boosting the accuracy of cloud detection, in this paper, 

we proposed a deep learning based method to detect clouds by 

fusing multi-scale convolutional features. Compared to previous 

methods, the proposed method has made following 

improvements: 1) Better performance on distinguishing clouds 

and bright non-cloud objects; 2) More detailed cloud boundary 

information in output cloud mask. The rest contents of the paper 

include method introduction, experiment results, discussion and 

conclusions. 

 

2. THE PROPOSED METHOD 

Unlike the architectures of previous deep learning based cloud 

detection methods (Gómez-Chova et al., 2017; Xie et al., 2017) 

which uses full connected layers to output class labels, the 

architecture of our proposed network is designed based on fully 

convolutional network (FCN) (Shelhamer et al., 2017) and 

SegNet (Badrinarayanan et al., 2017). FCN is presented for end-

to-end, pixels-to-pixels semantic segmentation, in which fully 

connected layers are replaced by convolutional layers to enable a 

classification net to output a spatial map, while SegNet is a deep 

convolutional encoder-decoder architecture which is proposed 

for semantic pixel-wise segmentation. MSCN shares a similar 
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architecture with FCN and SegNet, but with some improvements. 

To make full use of convolution features of different scales and 

further boost the cloud detection accuracy, multi-scale feature 

map fusion and residual network architecture (He et al., 2016) are 

applied in our network, respectively. 
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Figure 1. The architecture of the proposed MSCN. Feature maps 

with different scales are concatenated and fused. The output 

feature map of the final convolutional layer is regarded as cloud 

probability map and is fed to a binary classifier for pixel-wise 

binary cloud mask segmentation. 

 

As shown in Figure 1, our network contains a symmetric 

architecture of convolutional encoders and corresponding 

decoders, then a feature fusion module follows to produce a final 

result. The encoder-decoder architecture consists of 41 layers, 

including basic convolutional/deconvolutional layers that do not 

change the scale of feature maps, and strided 

convolutional/deconvolutional layers with 2 pixels stride that 

down-sample and up-sample feature maps. The feature fusion 

module is employed to aggregate features at 6 scales from the 

decoder stage, in which feature maps are up-sampled by 

separated deconvolutional filters to the same size as the input 

image, then concatenated and fed to a simple convolutional layer 

for the final output. All the maps from convolutional layers 

except the last in the network are activated by Rectified Linear 

Unit (ReLU), and tricks for optimizing deep networks, such as 

Skip connection (Basement for Residual learning (He et al., 

2016)) and Batch Normalization (Loffe and Szegedy, 2015), are 

also contained to boost its converging during training and 

improve its accuracy performance. 

 

The training data was clipped from published GaoFen-1 WFV 

cloud and cloud shadow cover validation data, which was 

established in 108 global regions with a resolution of 16m, and 

was firstly released in (Li et al., 2017). To the best of our 

knowledge, it is the largest cloud and cloud shadow data set with 

manually labeled ground truth masks. In this paper, a total 

number of 73080 sample images with a size of 256x256x4 were 

selected with a fixed stride form the whole dataset. We randomly 

select 80% of samples as training data, and the remaining part as 

validation samples. For each training sample, a binary cloud 

mask was set as label and was artificially generated from the 

original image: 1 for cloud pixels and 0 for non-cloud pixels.  

 

Besides, to reduce the negative influences of few incorrect labels  

in training data, in the end of our network we set a convolutional 

layer followed by mean square error loss to drive the network 

output cloud probability map, instead of binary cloud mask. 

Given a training dataset {𝑥𝑖 ,  𝑦𝑖}𝑖=1
𝑁  including multispectral 

images 𝑥𝑖 and corresponding cloud masks 𝑦𝑖, our goal is to learn 

a model 𝑓  that predicts cloud probability 𝑓(𝑥) , optimal 

parameters in 𝑓 can be learned by minimizing the mean square 

error loss which is averaged over the training set and defined as 

follow: 

 

𝐿𝑜𝑠𝑠 =  
1

𝑁
∑ ||𝑦𝑖 − 𝑓(𝑥𝑖)||2𝑖=𝑁

𝑖=1                     (1) 

 

For an output of cloud probability map, users can select 

appropriate threshold to segment the cloud probability map to a 

binary cloud mask, according to certain needs of different tasks. 

In this paper, a default segment parameter of 0.5 is set for better 

balancing the errors of commission and omission in segmented 

binary cloud mask. The training process relied on stochastic 

gradient descent (SGD) with a batch size of 128. The learning 

rate descended from 10-1 to 10−4 with an interval of every 30 

epochs, and the momentum was fixed to 0.9. Finally, the 

proposed network was trained for 120 epochs (36560 iterations) 

in about 3 days on MatConvNet (Vedaldi and Lenc, 2015) with 

support from a Titan Xp GPU. 

 

3. EXPERIMENT RESULTS AND ANALYSIS 

To demonstrate the benefits of adding residual unit and multi-

scale feature fusion, we compared the performances of the 

proposed network in situations with and without feature fusion or 

without residual unit. They are tested on a test dataset including 

another 73080 samples that are not overlapped with training data. 

As shown in Figure 2, from which it can be found that both 

feature fusion and residual unit are helpful to boosting the 

accuracy on cloud detection tasks. 

 

Figure 2. Accuracy curves for MSCN, MSCN without feature 

fusion, and MSCN without residual unit. 

 

Additionally, the proposed MSCN method is compared with two 

types of cloud detection methods in quantitative and visual 

manners. One compared cloud detection method is our 

previously proposed multi-feature combined method (MFC) [1] 

which uses multiple spectral features and single scale spatial 

features to implement threshold-based cloud segmentation. 

Another compared method (termed as DCN in this paper) 

proposed in [9] designs a deep convolutional network with multi-

scale prediction module for cloud and snow detection task. Both 

MFC and DCN method can be used for cloud detection in 

Gaofen-1 WFV imagery. 
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The accuracy curves of the proposed MSCN method and its 

comparisons with MFC are shown in Figure 3, in which we can 

see that the overall cloud accuracy is promoted with the number 

of training epoches increases and finally converged. The cloud 

accuracy of MSCN surpass MFC in terms of average overall 

accuracy (97.85% VS 96.80%), producer’s accuracy and user’s 

accuracy. The Figure 4 shows cloud detection examples of 

MSCN and MFC, in which we can see that MSCN has a superior 

advantage over MFC in areas of bright non-cloud objects covered 

including snow and bright water. In this paper, a global MODIS 

land cover product of 0.05 degree resolution is used for 

classifying the validation dataset into six categories. We observe 

that MSCN and MFC both acquired high accuracies in vegetation, 

urban and wetlands areas, and it should be noted that the pixel-

level average overall cloud accuracy in snow covered areas is 

significantly boosted from 39.94% of MFC to 86.51% of MSCN, 

the overall cloud accuracies of MSCN in water and barren areas 

are also higher than MFC. 

 

Figure 3. Accuracy tests of the proposed MSCN method. 

 

   

NIR-R-G image                   MFC                         MSCN 

   

Figure 4. Cloud detection results of MSCN and MFC. 

 

The DCN method was trained on large cloud and snow data set 

which is based on 50 Gaofen-1 WFV images. Considering that 

the providing experiment results of DCN are geometrically 

mismatched with the established reference cloud masks, we only 

compare MSCN with DCN in visual inspection manner. The 

Figure 5 shows cloud detection examples of MSCN and DCN. It 

can be observed that cloud detection results of DCN are rough 

and lose details in cloud boundaries, while MSCN provides more 

refined cloud masks because of the use of deconvolutional layers 

and multi-scale convolutional feature fusion. We will discuss the 

reasons of these differences in the following section. 

 

   

NIR-R-G image                   DCN                         MSCN 

   

Figure 5. Cloud detection results of MSCN and DCN. 

 

4. DISCUSSION 

There are several reasons that MSCN produces more accurate 

masks than MFC and DCN. Firstly, the uses of deconvolutional 

layers and skip connection in MSCN help to fuse the feature 

hierarchy to combine shallow appearance information and deep 

sematic information, multi-scale convolution feature fusion 

additionally makes MSCN better ability to distinguish clouds and 

bright noncloud objects. Secondly, MSCN apply residual 

learning to find better optimal convergence and boost the 

accuracy. Thirdly, our network is trained on a global-scale data 

set which consists of many types of land cover, the diversity of 

training data makes MSCN a stronger capability to cope with 

different cases. 

 

Without any parameters adjustment, the pre-trained MSCN 

network can also be applied to cloud detection for other types of 

multispectral imagery which has similar spectral setting. We 

have tested MSCN in multispectral images with different 

resolution ranges from 1m to 50m, such as Gaofen-2 PMS (4m), 

ZY-3 MUX (6m), Gaofen-1 PMS (8m), CBERS-04 P10 (10m), 

Gaofen-4 PMS (50m) etc., MSCN acquired not bad cloud 

detection results as show in Figure 6. To the best of our 

knowledge, it’s the first time that a single cloud detection method 

can directly process so many types of optical imagery with 

different resolution.  

 

In our implementation, MSCN takes less than 10 seconds on 

GPU mode or 5 minutes on CPU mode to process a whole 

Gaofen-2 PMS image (4503x4548x4 pixels) in MatConvNet on 

a computer with a Titan Xp GPU and a Core i7-7700K CPU. In 

the future, in order to achieve better performance in a specific 

kind of imagery, it is essential to fine tune the pre-trained model 

with small learning rate using specific type of imagery. 

 

    

Gaofen-2 PMS (4m)    
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ZY-3 MUX (6m) 

   

Gaofen-1 PMS (8m) 

   

CBERS-04 P10 (10m) 

   

Gaofen-4 PMS (50m) 

Figure 6. Cloud detection examples of MSCN in other kinds of 

multispectral imagery in different land covers.  

 

5. CONCLUSION 

In this paper, a multi-scale cloud network of convolutional 

encoders and corresponding decoders architecture followed by a 

feature fusion module is proposed to implement cloud detection 

for multispectral images. Experimental results indicate that 

multi-scale convolutional feature fusion and residual network 

architecture are both helpful to boost the accuracy of cloud 

detection. Additionally, MSCN achieves higher accuracy than 

traditional MFC method, and has obvious advantage of keeping 

cloud boundary details in produced cloud mask over the deep 

convolutional network method. The effectiveness of MSCN 

make it promising for future practical application in more kinds 

of optical images. 

 

In our future study, we will generalize the MSCN method to more 

images such as SPOT-6/7, WorldView-2/3, and investigate the 

possibility of cloud and cloud shadow detection for multiple 

kinds of imagery using single model. 
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