Acta Universitatis Sapientiae. Matematica | |
On extensions of Baer and quasi-Baer modules | |
E. Hashemi1  | |
关键词: S-compatible module; reduced module; Baer module; Quasi-Baer; module; skew monoid ring; | |
DOI : 10.2478/ausm-2018-0032 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: Editura Scientia / Scientia Publishing House | |
【 摘 要 】
Let R be a ring, MR a module, S a monoid, ω : S −→ End(R)a monoid homomorphism and R ∗ S a skew monoid ring. Then M[S] ={m1g1 + · · · + mngn | n ≥ 1, mi ∈ Mand gi ∈ S for each 1 ≤ i ≤ n}is a module over R ∗ S. A module MR is Baer (resp. quasi-Baer ) if the annihilator of every subset (resp. submodule) of M is generated by an idempotent of R. In this paper we impose S-compatibility assumption on the module MR and prove: (1) MR is quasi-Baer if and only if M[s]RS is quasi-Baer, (2) MR is Baer (resp. p.p) if and only if M[S]RS is Baer (resp. p.p), where MR is S-skew Armendariz, (3) MR satisfies the ascending chain condition on annihilator of submodules if and only if so does M[S]R∗S, where MR is S-skew quasi-Armendariz.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910285132722ZK.pdf | 377KB | download |