期刊论文详细信息
Genetics: A Periodical Record of Investigations Bearing on Heredity and Variation
Evolutionary Rescue Through Partly Heritable Phenotypic Variability
Joshua B. Plotkin^21  Oana Carja^12 
[1] Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19304^2;School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213^1
关键词: evolutionary rescue;    time to extinction;    bacterial persistence;    stochastic switching;    evolutionary bet-hedging;    fluctuating environments;    adaptation to environmental change;   
DOI  :  10.1534/genetics.118.301758
学科分类:医学(综合)
来源: Genetics Society of America
PDF
【 摘 要 】

Environmental variation is commonplace, but unpredictable. Populations that encounter a deleterious environment can sometimes avoid extinction by rapid evolutionary adaptation. Phenotypic variability, whereby a single genotype can express multiple different phenotypes, might play an important role in rescuing such populations from extinction. This type of evolutionary bet-hedging need not confer a direct benefit to a single individual, but it may increase the chance of long-term survival of a lineage. Here, we develop a population genetic model to explore how partly heritable phenotypic variability influences the probability of evolutionary rescue and the mean duration of population persistence in changing environments. We find that the probability of population persistence depends nonmonotonically on the degree of phenotypic heritability between generations: some heritability can help avert extinction, but too much heritability removes any benefit of phenotypic variability. Partly heritable phenotypic variation is particularly advantageous when it extends the persistence time of a declining population and thereby increases the chance of rescue via beneficial mutations at linked loci. We discuss the implications of these results in the context of therapies designed to eradicate populations of pathogens or aberrant cellular lineages.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910281790606ZK.pdf 1217KB PDF download
  文献评价指标  
  下载次数:20次 浏览次数:15次