International Journal of Advanced Robotic Systems | |
Pedestrian and cyclist detection based on deep neural network fast R-CNN | |
KelongWang1  | |
关键词: Intelligent driving; deep neural network; pedestrian detection; cyclist detection; fast R-CNN; | |
DOI : 10.1177/1729881419829651 | |
学科分类:自动化工程 | |
来源: InTech | |
【 摘 要 】
In this article, a unified joint detection framework for pedestrian and cyclist is established to realize the joint detection of pedestrian and cyclist targets. Based on the target detection of fast regional convolution neural network, a deep neural network model suitable for pedestrian and cyclist detection is established. Experiments for poor detection results for small-sized targets and complex and changeable background environment; various network improvement schemes such as difficult case extraction, multilayer feature fusion, and multitarget candidate region input were designed to improve detection and to solve the problems of frequent false detections and missed detections in pedestrian and cyclist target detection. Results of experimental verification of the pedestrian and cyclist database established in Beijingâs urban traffic environment showed that the proposed joint detection method for pedestrians and cyclists can realize the stable tracking of joint detection and clearly distinguish different target categories. Therefore, an important basis for the behavior decision of intelligent vehicles is provided.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910259689600ZK.pdf | 931KB | download |