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Pedestrian and cyclist detection based
on deep neural network fast R-CNN

Kelong Wang1,2 and Wei Zhou3

Abstract
In this article, a unified joint detection framework for pedestrian and cyclist is established to realize the joint detection of
pedestrian and cyclist targets. Based on the target detection of fast regional convolution neural network, a deep neural
network model suitable for pedestrian and cyclist detection is established. Experiments for poor detection results for
small-sized targets and complex and changeable background environment; various network improvement schemes such as
difficult case extraction, multilayer feature fusion, and multitarget candidate region input were designed to improve
detection and to solve the problems of frequent false detections and missed detections in pedestrian and cyclist target
detection. Results of experimental verification of the pedestrian and cyclist database established in Beijing’s urban traffic
environment showed that the proposed joint detection method for pedestrians and cyclists can realize the stable tracking
of joint detection and clearly distinguish different target categories. Therefore, an important basis for the behavior
decision of intelligent vehicles is provided.
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Introduction

The rapid development of intelligent driving technology

has improved road traffic safety and urban traffic conges-

tion. In particular, the protection of pedestrians and cyclists

has attracted attention from governments, research insti-

tutes, and automobile companies. Effective detection and

identification of pedestrians and cyclists is the prerequisite

for their protection.

Pedestrian detection usually uses the sliding window

method, which scales the image into different sizes and

traverses the pedestrian area using a fixed-size window

template. Dalal and Triggs used windows of different sizes

to slide over the original image.1 Felzenszwalb et al.

scanned and correspond the low-resolution feature image

through the root model and then matched the feature image

twice the resolution of the root model through the compo-

nent model.2 Sermanet et al. combined the output of

ConvNet multilayer convolution layer, global shape infor-

mation, and local detail information to train the convolu-

tional neural network model of pedestrian detection.3

Similar to pedestrian detection, cyclist detection also uses

the sliding window method. Cho et al. established a multi-

view cyclist detection model based on the deformable part

model.4 Li et al. designed a cyclist detection method based

on improved histograms of oriented gradients (HOG)
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features and support vector machine (SVM) classifier.5

Yang et al. and Huang et al. proposed a multilayer cyclist

detection method.6,7 Tian and Lauer established the geo-

metric relationship between the target size and image posi-

tion based on the geometric constraints of the on-board

camera; the scanning range of the image is restricted by

cyclist size; and the cascade classifier of multi-view model

is used to achieve cyclist target detection.8 The difference

between cyclist and pedestrian detection is that cyclists

have different aspect ratios under different visual angles.

A single fixed aspect ratio model is difficult to adapt to all

cyclists. The use of multiple models will increase the

amount of calculation and directly affect the practical

application of detection algorithms.

The effect of target detection and classification increases

when the target detection and classification model become

complex. Some scholars have proposed common target detec-

tion and classification methods, including segmentation clus-

tering and window scoring.9 Segmentation clustering records

the areas where detection targets may exist through image

segmentation methods, including super pixel clustering,

graph cut algorithm, and edge contours. Superpixel clustering

generates target candidate regions by merging superpixel

points, including the Selective Search,10 Random Prime,11

and Rankalankila.12 Graph cutting solves the image segmen-

tation problem through graph cutting algorithms,13 including

CPMC,14 Endres,15 and Rigor.16 Edge contour combines the

segmentation results by edge strength to generate target can-

didate regions.17–19 Window scoring evaluates each candi-

date window to select a target candidate area. Among these

methods, objectness20 selects the initial candidate region by

the prominent position in the image and then scores each

candidate region by color, edge, position, and size. Rahtu

et al. improved the scoring strategy and features based on the

objectness method by generating a large number of initial

candidate regions through independent/combined superpix-

els and multiple random sampling regions.21,22 Bing identi-

fied the target candidate region through simple edge features

and linear classifiers and consequently achieved rapid scor-

ing, but the positioning accuracy needs to be improved.23

Edge boxes select the target candidate region by fast sliding

window method and use target edge estimation and individual

tuning steps to improve positioning accuracy.24 Feng et al.

proposed a significance measurement method to generate

candidate regions.25 Zhang et al. and Li and Gao proposed

a simple gradient feature concatenation SVM method to gen-

erate target candidate regions.26,27 Among these methods,

selective search, edge boxes, and region proposal network

(RPN) methods provide good results but are only suitable for

general object detection. The candidate region selection

effect is not ideal for cyclist detection.

Challenges due to pedestrian posture, lighting, occlu-

sion, and scale changes still exist in a real road environ-

ment. Compared with pedestrian detection, cyclist

detection faces more challenges. Bicycle type and cyclist’s

clothes majorly change the appearance of the target,

cyclist’s posture changes the overall appearance of the tar-

get, and different observation angles change the aspect ratio

of the target. Traditional pedestrian or cyclist detection

methods usually treat these two targets separately, resulting

in confusion of the detection results. The resolution of the

traditional target detection model is limited, and effectively

solving the above problems faced by pedestrians and

cyclists is difficult.

A joint detection framework for pedestrians and cyclists

based on deep neural network method is established in this

study to solve the challenges faced by intelligent vehicles in

the detection and identification of pedestrians and cyclists in

complex driving environments. To solve frequent false

detections and missed detections of pedestrians and cyclists,

poor detection results of small-sized targets, and the com-

plex and changeable background environment, this article

presents the following main contributions: (1) a difficult case

extraction method is designed based on the fast regional

convolutional neural network, (2) a multilayer feature fusion

method is designed, (3) an improved algorithm of depth

network model is designed for multitarget candidate region

input, and (4) a unified method of pedestrian and cyclist joint

superscript detection and classification is constructed.

The remainder of this article is organized as follows.

The second section introduces the target detection system

architecture. Third section presents the pedestrian and

cyclist detection methods. Fourth section describes the

experiments of the algorithm and analysis results. Finally,

fifth section presents some conclusive remarks.

Target detection system architecture

Target detection architecture

The target detection method based on fast region convo-

lutional neural network is the most commonly used target

detection framework and is characterized by excellent

feature learning and classification ability of the deep con-

volution neural network model. The target candidate

region is classified as the target and background to be

detected, and the target recognition field has achieved a

remarkable effect.

Fast region-based convolutional neural networks (R-

CNN) proposes a multi-task simultaneous training

model. The method also inputs candidate regions and

the whole image extracted by the selective search

method, obtains convolution feature maps through the

multi-convolution layer and pooling layer, and extracts

the feature vectors of fixed length using the pooling

layer and the full connection layer of the region of

interest (ROI). The feature vectors are encoded to two

symbiotic output layers: one for estimating the target

category and the other for predicting the target position.

Unified training of the classification and positioning

models is achieved without occupying large hard disk

space, and fast training and detection are realized.
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The target detection framework of fast R-CNN is shown

in Figure 1.

The fast R-CNN region of interest pooling layer maps any

ROI in the feature map (corresponding to the target

candidate region in the original image) to a small feature map

of fixed size H�W. Assuming that the size of the ROI is

h� w, the pooling layer of the ROI approximates the maxi-

mum value in each small h = H� w = W region as the map-

ping result of the region. This maximum value is the max

pooling operation. Fast R-CNN defines a loss function that

supports multi-tasking to achieve the goal of simulta-

neous multi-task training.

Fast R-CNN uses two symbiotic output layer networks,

one of which is the estimated probability of each category

p ¼ ðp0; . . . ; pkÞ, including the total of k þ 1 categories in

the background. The other is the bounding-box regression

offset corresponding to each category tk ¼ ðtk
x ; t

k
y ; t

k
w; t

k
hÞ,

including the total of k þ 1 categories of background. For

each real category u, the target with the regression quantity

v of the corresponding real bounding box has a multi-task

loss function as shown in the following equation

lðp; u; tu; vÞ ¼ lclsðp; uÞ þ l � 1fu � 1g � lregðtu; vÞ ð1Þ

Among them, the classification loss function is a loga-

rithmic loss function, as shown in the following equation

lclsðp; uÞ ¼ �logðpuÞ ð2Þ

The second loss function is valid only when the real

target category corresponding to the candidate region is not

the background. The second loss function is shown in the

following equation

lregðtu; vÞ ¼
X

i2fx;y;w;hg
smoothL1

ðtu
i � viÞ ð3Þ

where smoothL1
ðxÞ is shown below

smoothL1
ðxÞ ¼ 0:5 x2; if jxj < 1

jxj�0:5; otherwise

�
ð4Þ

In equation (1), l can adjust the weights of the classifi-

cation and location loss functions. When tu and v are nor-

malized, l ¼ 1, good results are obtained.

Deep neural network architecture

The target categories to be detected are pedestrians and

cyclists. The probability estimate of the corresponding fast

R-CNN output layer includes the three categories (dimen-

sion 3) of pedestrians, cyclists, and background, and the

bounding-box regression offset includes these three cate-

gories (dimension 12, where the background regression

offset is zero). Fast R-CNN uses the target candidate region

as the multi-example target candidate region selection

method (MIOP), and the underlying network model used

includes VGG models of different depths: VGG8, VGG11,

and VGG16.28 The VGG network structure diagram of

different depths is shown in Figure 2, where the color filled

squares represent the convolutional layers or fully con-

nected layers with learning parameters.

Pedestrian and cyclist detection methods

Difficult case extraction network structure

Ren et al.29 proposed an online difficult case extraction

method to solve the problem of difficult case extraction

in fast R-CNN target detection. This technique extracts

difficult cases from many samples contained in each batch

of training images instead of simply randomly selecting

Figure 1. Target detection framework of fast R-CNN.
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training samples. The selected difficult cases are immedi-

ately used for iterative network training, thereby changing

the negative sample extraction conditions and random

extraction methods in fast R-CNN to ensure that the final

classification probability of samples can be used as the

extraction basis. The results of this method are better than

those of the traditional fast R-CNN method with a small

increase in training time. Drawing on this idea, this study

designs a corresponding difficult case extraction network

structure for fast R-CNN target detection by replacing the

two shared full connection layers and output layers with an

original full connection layer and output layer. The struc-

ture diagram of the proposed training network for difficult

case extraction is shown in Figure 3.

The network connection related to the difficult case

extraction layer is shown in Figure 4. As shown in Figure

4, the input of the difficult case extraction layer consists of

three parts, namely, the sample classification score

(CLS_score), the real labels, and the outer weights (out _

weights) of the bounding-box regression. The sample clas-

sification score is the classification output result of the deep

network to the sample, and the latter two are the input

quantities of the network. The weight of the outer layer

of the sample label is outputted, and bounding-box regres-

sion is conducted after the correction of the difficult sample

extraction layer.

The difficult case extraction layer selects a certain

proportion of samples as difficult cases based on the

sample-classification scores. These selected difficult cases

participate in the calculation of subsequent loss functions

and updating of network parameters, and the remaining

samples are ignored. Initially, a large number of samples

(up to 2000) are randomly selected from each batch of

training samples (minibatch) to be inputted into the net-

work. Then, 10% of the samples (up to 200) are extracted

from the difficult case extraction layer as the network loss

function for the difficult case calculation to correct the

network parameters. When selecting difficult samples, at

most one-third of positive samples are selected, and the

remaining ones are selected based on the sample scores.

The label of unselected samples is set to one, the outer

Figure 2. VGG network structure diagram of different depths.

Figure 3. Structure diagram of the proposed training network
for difficult case extraction. Figure 4. Network connection related to the difficult case

extraction layer.
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weight of bounding-box regression is set to zero, and the

ignored samples are not included in calculating the classi-

fication loss function (CLS_LOSS) and bounding-box-

regression loss function (BBOX_LOSS). The calculation

of the classification loss function is shown in the following

equation

Lcls ¼
1

N

XN

i¼1

1fui � 0g � lclsðpi; uiÞ ð5Þ

The calculation of the bounding-box regression loss

function is shown in the following equation

Lreg ¼
1

N

XN

i¼1

outweights � smoothL1

�
inweights � ðti � viÞ

�
ð6Þ

where N represents the number of samples inputted into the

network per batch of training samples (minibatch) and is set

to 2000; lclsðpi; uiÞ is a logarithmic loss function, as shown

in equation (2); out weights and in weights are the outer

and inner weights of the bounding-box regression, respec-

tively; and ti and vi represent the bounding-box-regression

offset (BBOX _ PRED) and the corresponding true

bounding-box-regression amount (BBOX _ TARGET),

respectively, as shown in equation (3). The smoothL1
ðxÞ

function is defined in equation (4). As shown in equations

(5) and (6), when calculating the loss function of each batch

of training samples, only the extracted difficult cases are

considered and the unselected samples are ignored. The

effective number of difficult cases is N=10, the calculated

amount of loss function of the difficult cases is reduced by

10 times, and the gradient size is also reduced by 10 times

when calculating the backward-propagation gradient. The

backward-propagation weight update calculation is shown

in the following equation

V tþ1 ¼ �V t � aDW t

W tþ1 ¼ W t þ V tþ1

ð7Þ

where Wt and W tþ1 are the network weights at times t and

t þ 1, respectively; Vt and V tþ1 are the network weight

updates at times t and t þ 1, respectively; DW t is the

backward-propagation weight gradient obtained at time t;

� is the inertia coefficient of the network weight updates at

time t; and a is the learning rate. When the training diffi-

cultly extracts the network, the weight gradient of back-

ward propagation is reduced by 10 times, and the learning

rate a needs to be increased to obtain the appropriate

training effect.

Multilayer feature fusion network structure

The structure of the multilayer feature fusion network is

shown in Figure 5.

For VGG 16 networks, we assume that the input image

size of the network is 224 � 224, the feature size of the

third convolution layer (CONV3-3) is 56 � 56, and the

feature size of the fifth convolution layer (CONV5-3) is

14 � 14. To fuse two feature maps of different sizes, the

third convolution layer is downsampled to 28 � 28 and

the fifth convolution layer is upsampled to 28 � 28 so

that the fusion of different feature maps can be realized.

The third convolution layer is downsampled by the max-

imum pooling layer. Conversely, the fifth convolution

layer is upsampled.

Considering the different amplitudes of activation values

of convolution layers at different depths, linking up the feature

maps sampled or reduced in dimensions at different layers

results in information suppression or enhancement. Accord-

ingly, the local response normalization operation proposed by

Krizhevsky et al.30 and Gao et al.31 is used to smooth the

activation values between different feature maps. The normal-

ized activation value is shown in the following equation

bi
x;y ¼ ai

x;y

,
k þ a

XminðN�1;iþn=2Þ

j¼maxð0;;i�n=2Þ
ðaj

x;yÞ
2

0
@

1
A
b

ð8Þ

where ai
x;y represents the activation value on an original

feature map.

Candidate area selection network structure

To solve the selection of candidate regions, the RPN

network structure is designed, as shown in Figure 6. The

classification result and regression offset of each target

candidate region are used to obtain the candidate regions

that may contain targets. The design of the reference

bounding box relies on the image input of a single size to

extract target candidate regions with different aspect ratios

and sizes. Based on the characteristics of pedestrian and

cyclist targets, this article designs a reference bounding box

with three aspect ratios (1: 1, 2: 1, and 3: 1) and five

dimensions (32 � 32, 64 � 64, 128 � 128, 256 � 256, and

512 � 512). According to the set reference bounding-box

parameters, 15 reference bounding boxes can be generated

for each position in the feature map.

Figure 5. Structure of the multilayer feature fusion network.
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The RPN training network includes two symbiotic out-

put layers, one representing the estimated probability pi of

positive samples and the other representing the bounding-

box-regression offset ti. The ith real target category is

marked as p�i (positive sample is one, negative sample is

zero), and the true bounding-box offset is marked as t�i
(corresponding to the four parameters x; y;w; h). RPN’s

multitask loss function is shown in the following equation

Lðfpig; ftigÞ ¼
1

N cls

X
i

lclsðpi; p
�
i Þ þ

1

N reg

X
i

p�i lregðti; t
�
i Þ

ð9Þ

where lclsð�Þ is a logarithmic loss function, as shown in

equation (2); lregð�Þ is a smooth L1 loss function, as shown

in equation (3); l is used to adjust the weights of the clas-

sification loss function and the location loss function; and

N cls and N reg are the batch training and scale of all target

candidate regions, respectively.

Overall network structure

Considering difficult case extraction, multilayer feature

fusion, multicandidate region input, RPN, and fast R-

CNN convolution layer sharing, we design the overall net-

work architecture for pedestrian and cyclist detection, as

shown in Figure 7.

As shown in Figure 7, the overall network model is

obtained through training to achieve effective detection

of pedestrian and cyclist targets. The method comprises the

following steps: (1) a group of target candidate regions is

extracted according to the MIOP, (2) another group of

target candidate regions is extracted through RPN, and

(3) the two groups of target candidate regions are classified

and optimally positioned through fast R-CNN, thereby rea-

lizing target detection. The last two steps realize the net-

work parameter sharing of the convolution layer, and the

network structure diagram is shown in Figure 8.

Experiment and result analysis

Model training

To verify the effect of pedestrian and cyclist target detec-

tion network, a large number of network models are

trained, and their training network models are shown in

Figure 9. “bl” represents the basic network and does not

consider any improvement methods, “hm” means consid-

ering difficult case extraction, “ml” means considering

multilayer feature fusion, “ml-hm” means that both

multilayer feature fusion and difficult case extraction are

considered, “faster” means faster R-CNN, “final” means

the final overall network, “iter” indicates the training

period of the network, and “lr” indicates the learning rate

of the network. The interconnected upper- and lower-layer

network model in Figure 9 shows that the upper-layer

network model is trained based on the lower-layer network

model.

Experimental results and analysis

To verify the effect of the deep neural network model for

pedestrian and cyclist detection, the VRU database was

used for experimental verification, and PR curve represen-

tation and average accuracy were used for evaluation. As

shown in Figures 10 and 11, when counting the test results

of pedestrians and cyclists, they are evaluated and verified

in the verification sets of different difficulty levels. The

influence of interference categories is ignored.

We compare the detection results of pedestrians and

cyclists in different basic network models. As shown in

Figures 10 and 11, VGG8-bl has better detection effect and

shorter average detection time than VGG11-bl and

VGG16-bl, but the cyclist’s detection effect is slightly

Figure 6. RPN network structure.

Training VGG-bl Training VGG-ml Training MIOP

Training RPN
(stage 1)  

Training Fast R-
CNN (stage 1)

Training RPN
(stage 2)  

Training Fast R-
CNN (stage 2)

Figure 7. Overall network architecture for pedestrian and cyclist
detection.

Figure 8. Network structure of parameter sharing of the last two
steps of the convolution layer.
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poorer and the average detection time is slightly longer.

Thus, VGG8 is selected as the basic network model for

verifying the network improvement scheme to clearly and

intuitively compare the detection results of different net-

work models on different difficulty-level verification sets,

as shown in Figures 10 and 11.

As shown in Figures 10 and 11, the average accuracy of

VGG8-final on VGG8-ml-hm, VGG8-final in different

difficulty-level verification sets is slightly high, whereas

the average accuracy of cyclist detection is basically flat,

although the relative VGG8-faster, VGG8-final advantage

is obvious. The average accuracies of pedestrian detection

Figure 9. Training network models.

Figure 10. Pedestrian detection results: (a) simple difficulty-level verification set, (b) medium difficulty-level verification set, and (c) high
difficulty-level verification set.

Wang and Zhou 7



for simple, medium, and high difficulty levels were 2.4%,

2.2%, and 4.7%, respectively, and the average accuracies of

cyclists were 0.2%, 4.8%, and 5.8%, respectively. Com-

pared with VGG16-ml-hm, VGG16-final, the average

accuracy of pedestrian detection in different difficulty-

level verification sets, is 1.7%, 4.1%, and 6.6%, and the

average accuracy of cyclist detection is basically flat.

Experimental results indicate that the VGG8/16-final

detection effect is better than using a method alone to

achieve the advantages of pedestrian and cyclist detection.

As shown in Figures 10 and 11, the VGG8-final detec-

tion effect significantly affects the basic network model

VGG8-BL. The average accuracies of pedestrian detection

for simple, medium, and high difficulty levels are 7.4%,

8.2%, and 9.7%, respectively, and the average accuracies of

cyclist detection are 1.3%, 5.2%, and 6.9%, respectively.

The VGG16-final detection effect is significantly improved

compared with the basic network model VGG16-BL,

especially the pedestrian detection effect, in different

difficulty-level verification sets. On the average, the pedes-

trian detection accuracies were 3.9%, 6.1%, and 6.1%,

respectively, and the average rider detection accuracies

were 0.1%, 0.7%, and 4%, respectively, for simple,

medium, and high difficulty levels. The validity of the

proposed network model is further verified. Compared

with the overall network model VGG16-final and

VGG8-final, the detection effect of VGG16-final is better

than VGG8-final, and the average accuracies of pedestrian

detection on different difficulty-level verification sets are

1.5%, 2.7%, and 4.3%, respectively. The average accura-

cies of cyclist detection are 0.2%, 1.5%, and 5.6%, respec-

tively, indicating that a deeper network helps improve the

results of final target detection.

Conclusion and future work

In view of the existing deep-learning methods used for

pedestrians and cyclists to detect deficiencies, based on the

fast R-CNN target detection framework, we focus on the

following to design a comprehensive difficult sample

extraction method and multilayer feature fusion: pedestrian

and cyclist target error detection; frequent, small-size tar-

gets; and difficult to detect, changeable, and complex envi-

ronment background. Many improved network structure

Figure 11. Cyclist detection results: (a) simple difficulty-level verification set, (b) medium difficulty-level verification set, and (c) high
difficulty-level verification set.
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models such as multitarget candidate region input greatly

improve the detection effect of pedestrian and cyclist tar-

gets. In the course of network training, the use of difficult

sample extraction instead of random sampling to select

negative samples effectively enhances the pedestrian and

cyclist target detection effect, thereby reducing the com-

plex driving road environment that causes false detection of

pedestrian and cyclist targets. A convolution feature map

with different depths can synthesize local and global fea-

tures, obtain stronger feature information, improve pedes-

trian and rider target detection effect, and enhance the

effect of small-size pedestrian and cyclist targets. By com-

bining the inputs of two target candidate regions to com-

pensate for the defect of the single target candidate region,

the complementary advantages of the MIOP and RPN

methods are realized. Thus, the detection effects of pedes-

trian and cyclist targets are further improved, thereby lead-

ing to a reduction in missing pedestrians and cyclist targets.

In future work, the pedestrian and cyclist target detec-

tion method based on deep learning proposed in this article

will be applied to the real environment test of intelligent

driven vehicles to improve the target detection rate of

pedestrians and cyclists. The utility of the proposed method

will be verified.
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