期刊论文详细信息
Сибирский математический журнал
Degenerate Linear Evolution Equations with the Riemann–Liouville Fractional Derivative
M. V. Plekhanova1  V. E. Fedorov2 
[1] Chelyabinsk State University;Chelyabinsk State University South Ural State University
关键词: degenerate evolution equation;    Riemann–Liouville derivative;    Cauchy type problem;    Mittag-Leffler type operator function;    initial-boundary value problem;    Scott-Blair medium;   
DOI  :  10.1134/S0037446618010159
学科分类:数学(综合)
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk
PDF
【 摘 要 】

We study the unique solvability of the Cauchy and Schowalter–Sidorov type problems in a Banach space for an evolution equation with a degenerate operator at the fractional derivative under the assumption that the operator acting on the unknown function in the equation is p-bounded with respect to the operator at the fractional derivative. The conditions are found ensuring existence of a unique solution representable by means of the Mittag-Leffler type functions. Some abstract results are illustrated by an example of a finite-dimensional degenerate system of equations of a fractional order and employed in the study of unique solvability of an initial-boundary value problem for the linearized Scott-Blair system of dynamics of a medium.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910258697630ZK.pdf 189KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:5次