期刊论文详细信息
Сибирский математический журнал | |
Finite Groups Whose |
|
J. Huang1  | |
[1] School of Mathematics and Statistics Jiangsu Normal University | |
关键词: finite group; modular subgroup; n-maximal subgroup; nearly nilpotent group; strongly supersoluble group; | |
DOI : 10.1134/S0037446618030187 | |
学科分类:数学(综合) | |
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk | |
【 摘 要 】
Let G be a finite group. If Mn< Mnâ1< · · · < M1< M0 = G with Mi a maximal subgroup of Miâ1 for all i = 1,..., n, then Mn (n > 0) is an n-maximal subgroup of G. A subgroup M of G is called modular provided that (i) ãX,M â© Zã = ãX,Mã â© Z for all X ⤠G and Z ⤠G such that X ⤠Z, and (ii) ãM,Y â© Zã = ãM,Y ã â© Z for all Y ⤠G and Z ⤠G such that M ⤠Z. In this paper, we study finite groups whose n-maximal subgroups are modular.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910257701914ZK.pdf | 185KB | download |