n-Maximal Subgroups Are Modular" /> 期刊论文

期刊论文详细信息
Сибирский математический журнал
Finite Groups Whose n-Maximal Subgroups Are Modular
J. Huang1 
[1] School of Mathematics and Statistics Jiangsu Normal University
关键词: finite group;    modular subgroup;    n-maximal subgroup;    nearly nilpotent group;    strongly supersoluble group;   
DOI  :  10.1134/S0037446618030187
学科分类:数学(综合)
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk
PDF
【 摘 要 】

Let G be a finite group. If Mn< Mn−1< · · · < M1< M0 = G with Mi a maximal subgroup of Mi−1 for all i = 1,..., n, then Mn (n > 0) is an n-maximal subgroup of G. A subgroup M of G is called modular provided that (i) 〈X,M ∩ Z〉 = 〈X,M〉 ∩ Z for all X ≤ G and Z ≤ G such that X ≤ Z, and (ii) 〈M,Y ∩ Z〉 = 〈M,Y 〉 ∩ Z for all Y ≤ G and Z ≤ G such that M ≤ Z. In this paper, we study finite groups whose n-maximal subgroups are modular.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910257701914ZK.pdf 185KB PDF download
  文献评价指标  
  下载次数:29次 浏览次数:25次