期刊论文详细信息
Cellular Physiology and Biochemistry
Ginsenoside 20(S)-Rg3 Inhibits the Warburg Effect Via Modulating DNMT3A/ MiR-532-3p/HK2 Pathway in Ovarian Cancer Cells
Yuanyuan Zhou1 
关键词: Ginsenoside;    Ovarian cancer;    Warburg effect;    MicroRNA;   
DOI  :  10.1159/000488273
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims The Warburg effect is one of the main energy metabolism features supporting cancer cell growth. 20(S)-Rg3 exerts anti-tumor effect on ovarian cancer partly by inhibiting the Warburg effect. microRNAs are important regulators of the Warburg effect. However, the microRNA regulatory network mediating the anti-Warburg effect of 20(S)-Rg3 was largely unknown. Methods microRNA deep sequencing was performed to identify the 20(S)-Rg3-influenced microRNAs in SKOV3 ovarian cancer cells. miR-532-3p was overexpressed by mimic532-3p transfection in SKOV3 and A2780 cells or inhibited by inhibitor532-3p transfection in 20(S)-Rg3-treated cells to examine the changes in HK2 and PKM2 expression, glucose consumption, lactate production and cell growth. Dual-luciferase reporter assay was conducted to verify the direct binding of miR-532-3p to HK2. The methylation status in the promoter region of pre-miR-532-3p gene was examined by methylation-specific PCR. Expression changes of key molecules controlling DNA methylation including DNMT1, DNMT3A, DNMT3B, and TET1-3 were examined in 20(S)-Rg3-treated cells. DNMT3A was overexpressed in 20(S)-Rg3-treated cells to examine its influence on miR-532-3p level, HK2 and PKM2 expression, glucose consumption and lactate production. Results Deep sequencing results showed that 11 microRNAs were increased and 9 microRNAs were decreased by 20(S)-Rg3 in SKOV3 cells, which were verified by qPCR. More than 2-fold increase of miR-532-3p was found in 20(S)-Rg3-treated SKOV3 cells. Forced expression of miR-532-3p reduced HK2 and PKM2 expression, glucose consumption and lactate production in SKOV3 and A2780 ovarian cancer cells. Inhibition of miR-532-3p antagonized the suppressive effect of 20(S)-Rg3 on HK2 and PKM2 expression, glucose consumption and lactate production in ovarian cancer cells. Dual-luciferase reporter assay showed that miR-532-3p directly suppressed HK2 rather than PKM2. miR-532-3p level was controlled by the methylation in the promoter region of its host gene. 20(S)-Rg3 inhibited DNMT3A expression while exerted insignificant effect on DNMT1, DNMT3B and TET1-3. 20(S)-Rg3 reversed DNMT3A-mediated methylation in the promoter of the host gene of miR-532-3p, and thus elevated miR-532-3p level followed by suppression of HK2 and PKM2 expression, glucose consumption and lactate production. Conclusions 20(S)-Rg3 modulated microRNAs to exert the anti-tumor effect in ovarian cancer. 20(S)-Rg3 lessened the DNMT3A-mediated methylation and promoted the suppression of miR-532-3p on HK2 to antagonize the Warburg effect of ovarian cancer cells.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910257624406ZK.pdf 1695KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:12次