| Neuro-signals | |
| Brain Beta-Catenin Signalling During Stress and Depression | |
| Chuin Hau Teo^11  | |
| [1] Brain Research Institute Monash Sunway (BRIMS), School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor Malaysia^1 | |
| 关键词: Wnt; GSK3β; Glucocorticoids; Serotonin; miRNA; | |
| DOI : 10.1159/000487764 | |
| 学科分类:神经科学 | |
| 来源: S Karger AG | |
PDF
|
|
【 摘 要 】
Beta-catenin is a protein with dual functions in the cell, playing a role in both adhesion between cells as well as gene transcription via the canonical Wnt signalling pathway. In the canonical Wnt signalling pathway, beta-catenin again plays multiple roles. In the embryonic stage, the regulation of beta-catenin levels activates genes that govern cell proliferation and differentiation. In an adult organism, beta-catenin continues to regulate the cell cycle – as a result over-expression of beta-catenin may lead to cancer. In the brain, dysfunctions in Wnt signalling related to beta-catenin levels may also cause various pathological conditions like Alzheimer’s disease, Parkinson’s disease, and depression. Beta-catenin can be influenced by stressful conditions and increases in glucocorticoid levels. In addition, beta-catenin can be regulated by neurotransmitters such as serotonin and dopamine. Fluctuations in beta-catenin in brain regions under duress have been associated with depressive-like behaviours. It is theorized that the change in behaviour can be attributed to the regulation of Dicer by beta-catenin. Dicer, a protein that produces micro-RNAs in the cell, is a target gene for beta-catenin. Amongst the micro-RNA that it produces are those involved in stress resilience. In this way, beta-catenin has taken its place in the well-studied biochemistry of stress and depression, and future research into this interesting protein may yet yield fruitful results in that field.
【 授权许可】
CC BY-NC-ND
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO201910256756607ZK.pdf | 1861KB |
PDF