期刊论文详细信息
Сибирский математический журнал
Construction of Stable Rank 2 Bundles on ℙ3 Via Symplectic Bundles
D. A. Vassiliev1  A. S. Tikhomirov2  S. A. Tikhomirov3 
[1] Koryazhma Branch of Northern (Arctic) Federal University named after M. V. Lomonosov;National Research University Higher School of Economics;Yaroslavl State Pedagogical University named after K. D. Ushinskii
关键词: rank 2 bundles;    moduli of stable bundles;    symplectic bundles;   
DOI  :  10.1134/S0037446619020150
学科分类:数学(综合)
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk
PDF
【 摘 要 】

In this article we study the Gieseker–Maruyama moduli spaces ℬ(e, n) of stable rank 2 algebraic vector bundles with Chern classes c1 = e ∈ {−1, 0} and c2 = n ≥ 1 on the projective space ℙ3. We construct the two new infinite series Σ0 and Σ1 of irreducible components of the spaces ℬ(e, n) for e = 0 and e = −1, respectively. General bundles of these components are obtained as cohomology sheaves of monads whose middle term is a rank 4 symplectic instanton bundle in case e = 0, respectively, twisted symplectic bundle in case e = −1. We show that the series Σ0 contains components for all big enough values of n (more precisely, at least for n ≥ 146). Σ0 yields the next example, after the series of instanton components, of an infinite series of components of ℬ(0, n) satisfying this property.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910255588402ZK.pdf 255KB PDF download
  文献评价指标  
  下载次数:3次 浏览次数:1次