期刊论文详细信息
Cellular Physiology and Biochemistry
Inhibition of Histone Deacetylases Prevents Cardiac Remodeling After Myocardial Infarction by Restoring Autophagosome Processing in Cardiac Fibroblasts
Yaping Wang1 
关键词: TSA;    Cardiac remodeling;    Autophagy;   
DOI  :  10.1159/000493672
学科分类:分子生物学,细胞生物学和基因
来源: S Karger AG
PDF
【 摘 要 】

Background/Aims Histone deacetylases (HDACs) play a critical role in the regulation of gene transcription, cardiac development, and diseases. The aim of this study was to investigate whether the inhibition of HDACs improves cardiac remodeling and its underlying mechanisms in a mouse myocardial infarction (MI) model. Methods The HDAC inhibitor trichostatin A (TSA, 0.1 mg/kg/day) was administered via daily intraperitoneal injections for 8 consecutive weeks after MI in C57/BL mice. Echocardiography and tissue histopathology were used to assess cardiac function. Cultured neonatal rat cardiac fibroblasts (NRCFs) were subjected to simulated hypoxia in vitro. Autophagic flux was measured using the tandem fluorescent mCherry-GFP-LC3 assay. Western blot was used to detect autophagic biomarkers. Results After 8 weeks, the inhibition of HDACs in vivo resulted in improved cardiac remodeling and hence better ventricular function. MI was associated with increased LC3-II expression and the accumulation of autophagy adaptor protein p62, indicating impaired autophagic flux, which was reversed by TSA treatment. Cultured NRCFs exhibited increased cell death after simulated hypoxia in vitro. Increased cell death was associated with markedly increased numbers of autophagosomes but not autolysosomes, as assessed by punctate dual fluorescent mCherry-green fluorescent protein tandem-tagged light chain-3 expression, indicating that hypoxia resulted in impaired autophagic flux. Importantly, TSA treatment reversed hypoxia-induced impaired autophagic flux and led to a 40% decrease in cell death. This was accompanied by improved mitochondrial membrane potential. The beneficial effects of TSA therapy were abolished by RNAi intervention targeting LAMP2; likewise, in vivo delivery of chloroquine abolished the TSA-mediated cardioprotective effects. Conclusion Our results provide evidence that the HDAC inhibitor TSA prevents cardiac remodeling after MI and is dependent on restoring autophagosome processing of cardiac fibroblasts.

【 授权许可】

CC BY-NC-ND   

【 预 览 】
附件列表
Files Size Format View
RO201910252606542ZK.pdf 2648KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:20次