期刊论文详细信息
Proceedings of the Indian Academy of Sciences. Mathematical sciences
Traveling wave solutions of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes
CHUFEN WU^1,21  YANLING TIAN^1,22 
[1] Department of Mathematics, Foshan University, Foshan 528000, People’s Republic of China^2;School of Mathematics, South China Normal University, Guangzhou 510631, People’s Republic of China^1
关键词: Diffusive predator–prey model;    traveling wave solution;    modified Leslie– Gower;    Holling-type II scheme;    shooting method;   
DOI  :  
学科分类:数学(综合)
来源: Indian Academy of Sciences
PDF
【 摘 要 】

We study a diffusive predator–prey model with modified Leslie–Gower and Holling-II schemes with $D = 0$. We establish the existence of traveling wave solutions connecting a positive equilibrium and a boundary equilibrium via the ‘shooting method’, and the non-existence by the ‘eigenvalue method’. It should be emphasized that a threshold value $c^{\ast} = \sqrt{4\alpha}$ is found in our paper.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910252356609ZK.pdf 576KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:6次