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1. Introduction

The existence and non-existence of traveling solutions are very important topics in the
study of asymptotic behaviors and dynamics for nonlinear evolution equations. Because
of their significant effects in applied sciences such as physics, epidemics and ecology, etc,
they have gained much attention during the past forty years. Lots of relevant methods and
theory are established (see [2,5,8,10,13–15,17–21] and the references therein). However,
most of the research papers listed above concentrate on monotone dynamics, while few of
them focus on non-monotone dynamics (see [4,5]).

An interesting non-monotone model

ẋ =
(

a1 − bx − c1 y

x + k1

)
x,

ẏ =
(

a2 − c2 y

x + k2

)
y, (1.1)

has been considered by Nindjin and Aziz-Alaoui in [11]. The two species food chain
model (1.1) describes a prey population x which serves as food for a predator. The model
parameters a1, a2, b, c1, c2, k1 are assumed to be positive. They are defined as follows: a1
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is the growth rate of prey x , b measures the strength of competition among individuals
of species x, c1 is the maximum value of the per capita reduction rate of x due to y, k1
(respectively, k2) measures the extent to which environment provides protection to prey
x (respectively, to the predator y), a2 describes the growth rate of y, and c2 has a similar
meaning to c1.

Taking the diffusion of the species into account and doing dimensionless transformation,
one can obtain the following model:

∂U

∂t
= D

∂2U

∂x2 +
(

1 − U − β1W

U + k1

)
U,

∂W

∂t
= ∂2W

∂x2 + αW

(
1 − β2W

U + k2

)
, (1.2)

where U and W denote the prey species and the predator species respectively. More details
are in [16]. It is obvious that E0 = (0, 0), E1 = (1, 0), E2 = (0, k2

β2
) are three equilibria

of (1.2). A positive equilibrium can be obtained from the following proposition, which
was discussed in [11].

PROPOSITION 1.1

System (1.2) has a unique interior equilibrium E∗ = (u∗, w∗) (i.e., u∗ > 0, w∗ > 0) if
the following conditions hold:

k2

β2
<

k1

β1
, (1.3)

where

u∗ = 1

2β2
[−(β1 − β2 + β2k1) + �

1
2 ], w∗ = u∗ + k2

β2
,

and � = (β1 − β2 + β2k1)
2 + 4β2(β2k1 − β1k2).

The purpose of our paper is to establish the existence and non-existence of nonnegative
traveling wave solutions connecting (u∗, w∗) and (1, 0) of system (1.2). Traveling wave
solutions are of the form U (x, t) = u(x + ct), W (x, t) = w(x + ct), where c > 0 is the
wave speed parameter. Setting s = x + ct , we see that u, w can be regarded as functions
of one variable s. Therefore the system (1.2) with D = 0 becomes

u′ = 1

c

(
1 − u − β1w

u + k1

)
u,

w′′ = cw′ − αw

(
1 − β2w

u + k2

)
. (1.4)

We point out that D = 0 is a special case, which is the limiting case when D is small.
It corresponds to a senario in which the prey species diffuses much more slowly than
the predator species. For example, a plant species being consumed by a relatively mobile
herbivore.

Moreover, the wave solutions satisfy the following boundary condition

u(−∞) = 1, w(−∞) = 0,

u(+∞) = u∗, w(+∞) = w∗. (1.5)
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The equilibrium (1, 0) represents the population of the prey at the environmental carrying
capacity in the absence of predators. The equilibrium (u∗, w∗) represents the time constant
coexistence of both species. The existence of such wave solutions biologically indicates that
if the habitat is initially uniformly saturated with prey, inductive predator at the boundary
of the habitat may result in a ‘wave of invasion’ of predators.

Our paper is organized as follows. We consider the existence and non-existence of the
solutions of the equations (1.4) and (1.5) in section 2. The ‘shooting method’ is used to
obtain the existence of such solutions since the ‘upper-lower solutions method’ is not valid
when D = 0. Our results show that there is a threshold value c∗ = √

4α such that the
existence of traveling waves is obtained if c ≥ c∗ and the non-existence is obtained if
c < c∗. In section 3, some numerical simulations are presented to illustrate the analytic
results and future work is discussed.

2. Traveling wave solutions with D = 0

In this section, we investigate the existence of traveling wave solutions of system (1.2)
when D = 0 which is equivalent to the existence of solutions of system (1.4). A method
which is called the ‘shooting method’ will be applied here. In order to use this method, we
rewrite system (1.4) as a first order system in R:

u′ = 1

c

(
1 − u − β1w

u + k1

)
u,

w′ = z,

z′ = cz − αw

(
1 − β2w

u + k2

)
. (2.1)

Therefore, the equilibria E0, E1, E2 and E∗ of (1.4) are equivalent to the critical points
(0, 0, 0), (1, 0, 0), (0, k2

β2
, 0) and (u∗, w∗, 0) of system (2.1) respectively.

Obviously, the first equation in (1.4) has singularity at u = −k1, and the third equation
has singularity at u = −k2. Let −k = max{−k1,−k2} and D := (−k,∞) × R × R. For
any initial point (u0, w0, z0) ∈ D, the trajectory starts from (u0, w0, z0) and will stay in D
forever. On the other hand, the critical points (0, 0, 0), (1, 0, 0),(0, k2

β2
, 0) and (u∗, w∗, 0)

of system (2.1) lie in the domain D. In the following discussions, we shall only consider
system (2.1) in D.

From (1.5), we consider the solutions of system (2.1) with u(s) ≥ 0, w(s) ≥ 0 satisfying

u(−∞) = 1, w(−∞) = 0, z(−∞) = 0,

u(+∞) = u∗, w(+∞) = w∗, z(+∞) = 0. (2.2)

2.1 A variant of Wazewski’s theorem and a Wazewski set

The ‘shooting method’ combines the qualitative analysis for orbits on the phase plane,
the Lyapunov function method and the invariant manifold principle together with the
construction of a Wazewski set. It seems that it is very challenging for the construction
of the Wazewski set and Lyapunov function. Since Dunbar’s pioneer work, not much
references have been published on this aspect. In view of this, the method is based on a
variant of Wazewski’s theorem, so we state some notations and the related theorem in the
following. For more details, see [4–6].
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Consider the differential equation

dy
ds

= f (y), y ∈ R
n, (2.3)

where f : R
n → R

n is continuous and satisfies a Lipschitz condition. Let y(s; y0)

be the unique solution of system (2.3) satisfying y(0; y0) = y0. For convenience, set
y(s; y0) = y0 · s. Let U · S be the set of points y0 · s, where y0 ∈ U, s ∈ S. For a given
subset W ⊆ R

n , let

W− = {y0 ∈ W | any s > 0, y0 · [0, s] � W}.
W− is called the immediate exit set of W. Let � ⊆ W be given. Define

�0 = {y0 ∈ � | there is an s0 = s0(y0) such that y0 · s0 /∈ W}.
For y0 ∈ �0, define T (y0) = sup{s|y0 · [0, s] ⊆ W}. T (y0) is called an exit time. Note
that y0 · T (y0) ∈ W−. On the other hand, T (y0) = 0 if and only if y0 ∈ W−. The notation
cl (W) is used for the closure of W. Proposition 2.1 would be devoted to proving the main
result in this section.

PROPOSITION 2.1

Suppose

(1) y0 ∈ �, and y0 · [0, s] ⊆ cl (W), then y0 · [0, s] ⊆ W.
(2) y0 ∈ �, y0 · s ∈ W, y0 · s /∈ W−, then there is an open set Vs about y0 · s disjoint

from W−.
(3) � = �0, � is compact, and � intersects a trajectory of (2.3) only once.

Then the mapping F(y0) = y0 · T (y0) is a homeomorphism from � to its image on W−.

A set W ⊆ R
n that satisfies statements (1) and (2) is called a Wazewski set. With regard

to system (1.4), we give some sets. Define some sets of D:

P = {(u, w, z) ∈ D | u < u∗, w > w∗, z > 0}, Q = {(u, w, z) ∈ D | u

> u∗, w < w∗, z < 0},
J = {(u, w, z) ∈ D | u ≥ u∗, w ≤ 0, z = 0}, W = D\(P ∪ Q).

Now we study the structure of W−.

Lemma 2.1. W− has the following structure:

W− = ∂W\(J ∪ {(u∗, w∗, 0)}).

Proof. Obviously by the vector field, if (u, w, z) = (u∗, w∗, 0) or (u, w, z) ∈ J , the
trajectory will not leave W immediately. Then it is sufficient to prove that any point in
∂W\(J ∪ {(u∗, w∗, 0)}) will leave W immediately.

Since ∂W\(J ∪ {(u∗, w∗, 0)}) = {∂P\{(u∗, w∗, 0)}} ∪ {∂Q\(J ∪ {(u∗, w∗, 0)})}, then
we should claim that any trajectory through the point in ∂P\{(u∗, w∗, 0)} and ∂Q\(J ∪
{(u∗, w∗, 0)}) will enter the region P or Q.
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The set ∂P\{(u∗, w∗, 0)} is represented in the form

∂P\{(u∗, w∗, 0)} = {u = u∗, w > w∗, z > 0}
∪ {−k < u < u∗, w = w∗, z > 0}
∪ {−k < u < u∗, w > w∗, z = 0}
∪ {u = u∗, w = w∗, z > 0} ∪ {u = u∗, w > w∗, z = 0}
∪ {−k < u < u∗, w = w∗, z = 0}.

If a trajectory passes through a point in {u = u∗, w > w∗, z > 0}, it would enter the
region P since the first equation of system (2.1) implies u′ < 0. Similarly, the trajectory
through a point in any other subset enters the region P too.

On the other hand, the set ∂Q\(J ∪ (u∗, w∗, 0)) is represented as

∂Q\(J ∪ (u∗, w∗, 0)) = {u = u∗,−∞ < w < w∗, z < 0}
∪ {u > u∗, w = w∗, z < 0}
∪ {u > u∗, 0 < w < w∗, z = 0}
∪ {u = u∗, w = w∗, z < 0}
∪ {u = u∗, 0 < w < w∗, z = 0}
∪ {u > u∗, w = w∗, z = 0}.

If a trajectory passes through a point in {u = u∗,−∞ < w < w∗, z < 0}, then it would
enter the region Q since the first equation of system (2.1) implies u′ > 0. The same
conclusion is obtained when the trajectory passes through a point in any other subset. The
proof is complete. �

Obviously, W− is not a connected set. One component of W− is ∂P\{(u∗, w∗, 0)}, and
the other one is ∂Q\(J ∪ {(u∗, w∗, 0)}.

2.2 The traveling wave solution

In this section, we investigate the existence of the traveling wave solutions which satisfies
(2.2). The Jacobic matrix at (1, 0, 0) is

J (1, 0, 0) =
⎛
⎜⎝

−1

c
− β1

c(1 + k1)
0

0 0 1
0 −α c

⎞
⎟⎠ . (2.4)

Thus the characteristic equation of system (2.1) at (1, 0, 0) is(
λ + 1

c

)
[λ(λ − c) + α] = 0,

and the eigenvalues are

λ1 = −1

c
, λ2 = c − √

c2 − 4α

2
, λ3 = c + √

c2 − 4α

2
. (2.5)
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If 0 < c <
√

4α, then (λ2, λ3) is a complex conjugate pair of eigenvalues with positive
part. Thus there is a two dimensional unstable manifold based at (1, 0, 0). The critical point
(1, 0, 0) is a spiral point on the unstable manifold. Therefore a trajectory approaching
(1, 0, 0) must have w(s) < 0 for some s. This violates the requirement that w(s) is
nonnegative. This demonstrates the non-existence of traveling wave solutions satisfying
(2.2) when 0 < c <

√
4α. Hence we have as follows.

Theorem 2.1. If 0 < c <
√

4α, then the traveling wave solutions with (2.2) do not exist,
which means that system (1.2) with D = 0 does not have the nonnegative traveling wave
solutions connecting (1, 0) and (u∗, w∗).

As for the case where c ≥ √
4α, the analysis is complicated. For better illustration, we

first state our main result here.

Theorem 2.2. Suppose k1 > 1 − u∗. If c ≥ √
4α, then the traveling wave solution with

(2.2) exists. That is, system (1.2) with D = 0 has a nonnegative traveling wave solution
connecting (1, 0) and (u∗, w∗). Furthermore, let

A1 = −
(

1 − 2u∗ − β1w
∗k1

(u∗ + k1)2

)
, A2 = β1u∗

(u∗ + k1)
.

There exists a critical value

α∗ = α∗(u∗, c) ≥ A2
1

4
(

A1 + A2
β2

)

such that

(1) if α ≤ α∗, the solution converges monotonically to (u∗, w∗, 0) for large s,
(2) if α > α∗, the solution exhibits exponential oscillations around (u∗, w∗, 0) for large

s.

2.3 Proof of Theorem 2.2

Under the condition c >
√

4α, the characteristic equation has three distinct real eigen-
values: λ1 < 0 < λ2 < λ3. Let χ1, χ2, χ3 be the eigenvectors associated with λ1, λ2, λ3
respectively. We can choose them as

χ1 =
⎛
⎝1

0
0

⎞
⎠ , χ2 =

⎛
⎜⎝

− β1

(1 + k1)(cλ2 + 1)
1
λ2

⎞
⎟⎠ , χ3 =

⎛
⎜⎝

− β1

(1 + k1)(cλ3 + 1)
1
λ3

⎞
⎟⎠ .

(2.6)

Applying Theorem 6.1 of [7, page 242], there is a one-dimensional unstable manifold
corresponding to the largest eigenvalues λ3, denoted byU1. There is also a two-dimensional
unstable manifold U2 corresponding to λ2 and λ3. Obviously, we know that U1 ⊆ U2.
Points on U1 are parametrically represented in a small neighborhood of (1, 0, 0) by a
function u1 : R

1 → R
3, where

u1(m) = (1, 0, 0)T + mχ3 + o(|m|). (2.7)
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Points on U2 are represented by u2 : R
2 → R

3, where

u2(m, n) = (1, 0, 0)T + mχ3 + nχ2 + o(|m|, |n|). (2.8)

An octant near the critical point (1, 0, 0) is denoted by

	1 = {(u, w, z) ∈ D | u ≤ 1, w ≥ 0, z ≥ 0}.
We will discuss the properties of the trajectory on the branch of the strongly unstable
manifold U1 in the octant 	1.

Lemma 2.2. If c ≥ √
4α, then for the trajectories on the branch of the strongly unstable

manifold U1 in the octant 	1, we have w(s) > 0 and z(s) > c
2w(s) for all s > 0.

Proof. Consider a trajectory on the branch of the strongly unstable manifold U1 in the
octant {(u, w, z) ∈ D | u < 1, w > 0, z > 0}. It is easy to see that it converges to (1, 0, 0)

tangent to the eigenvector χ3. From the expressions of λ3 and χ3, we know that the second
and third components of the tangent vector satisfies z = λ3w ≥ c

2w. Thus there is a point
on the trajectory whose components satisfy u < 1, w > 0, z > c

2w. Because system (2.1)
is autonomous, the time variable may be reset to this point corresponding to s = 0. Hence
it is sufficient to prove a solution of (2.1) with u(0) < 1, w(0) > 0 and z(0) > c

2w(0) .
Suppose, by contradiction, there is an s > 0 such that z(s) ≤ c

2w(s). Let s1 = inf{s >

0|z(s) ≤ c
2w(s)}. For 0 ≤ s ≤ s1, w′(s) = z(s) ≥ c

2w(s) and w(0) > 0, so w(s1) > 0.
Also z(s1) = c

2w(s1) and z(s) > c
2w(s) for 0 ≤ s < s1. Therefore,

z′(s1) − c

2
w′(s1) = z′(s1) − c

2
z(s1) ≤ 0.

Substituting from (2.1),

cz(s1) − αw(s1)

(
1 − β2w(s1)

u(s1) + k2

)
− c

2
z(s1) ≤ 0.

Noticing that z(s1) = c
2w(s1), it follows that

c2

4
w(s1) − αw(s1)

(
1 − β2w(s1)

u(s1) + k2

)
≤ 0.

Since w(s1) > 0, we have

c2

4
− α <

c2

4
− α

(
1 − β2w(s1)

u(s1) + k2

)
≤ 0,

which is a contradiction to c ≥ √
4α. So we conclude that z(s) > c

2w(s) for all s > 0 and
also w(s) > 0 for all s > 0. The proof is complete. �

Lemma 2.3. Suppose c ≥ √
4α. A trajectory on the portion of the strongly unstable man-

ifold U1 in the octant 	1 must satisfy

w(s) ≥ −
(

1 + c2

2

)
u + k1

β1
(u(s) − 1) for all s. (2.9)
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Proof. First we consider the case when the trajectory is in U1 ∩ 	1. Since

χ3 =
⎛
⎜⎝

− β1

(1 + k1)(cλ3 + 1)
1
λ3

⎞
⎟⎠ =

⎛
⎝ξ1

ξ2
ξ3

⎞
⎠ ,

and for any u = (u, w, z)T ∈ U1, we obtain

ξ2 = − (1 + k1)(cλ3 + 1)

β1
ξ1.

Since it is approximated from (2.7) that u = 1 + mξ1, w = mξ2, one has

w = −1 + k1

β1
(cλ3 + 1)mξ1 = −1 + k1

β1
(cλ3 + 1)(u − 1).

Substituting λ3 = c + √
c2 − 4α

2
into the above expression, we obtain

w = −1 + k1

β1

(
c2 + c

√
c2 − 4α

2
+ 1

)
(u − 1)

= D̄(u) − 1 + k1

β1

c
√

c2 − 4α

2
(u − 1),

where

D̄(u) = −
(

1 + c2

2

)
1 + k1

β1
(u − 1) .

Noticing that u ∈ U1 ∩ 	1, u ≤ 1. It follows that the inequality (2.9) is valid for u =
(u, w, z)T ∈ U1 ∩ 	1. That means there is s1 > −∞ such that

w(s) ≥ D̄(u)(s) for all − ∞ < s ≤ s1.

Next we study the case when the trajectory is out of U1 ∩ 	1. Assume, by contradiction,
that there is s2 ≥ s1 such that

w(s2) = D̄(u)(s2) (2.10)

and

w(s) < D̄(u)(s) for s > s2.

Furthermore, one can have

ẇ(s2) + D̄(u)

du
u̇

∣∣∣∣
s=s2

< 0. (2.11)
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But (2.11) is not valid if we calculate the right side of the inequality carefully. For s = s2,
we have

ẇ(s) − dD̄(u)(s)

ds
= z − dD̄(u)(s)

ds

>
c

2
w − 1 + c2

2

β1
(1 − 2u − k1)

1

c
u

(
1 − u − β1w

u + k1

)
.

Substituting (2.10) into the right side of the above term yields

c

2

u + k1

β1

(
1 + c2

2

)
(1 − u) −

(
1 + c2

2

)
1 − 2u − k1

β1

× u

c

[
1 − u −

(
1 + c2

2

)
(1 − u)

]

= c

2

(
1 + c2

2

)
1 − u

β1
[u + k1 + (1 − 2u − k1)u]

= c

2

(
1 + c2

2

)
1 − u

β1
(2u + k1)(1 − u) > 0.

Hence ẇ(s)− dD̄(u)(s)
ds = z − dD̄(u)(s)

ds > 0, and it implies that (2.11) is not valid. It follows
that (2.9) holds true for all s > 0. The proof is complete. �

Lemma 2.4. Set A = αβ2(1+k1)
k2β1

. For any given d >
c(1+ A

u∗ )+
√

(1+ A
u∗ )2c2+4A

2 , if

0 < w(0) < −
(

1 + cd

u∗

)
1 + k1

β1
(u(0) − 1) and z(0) < dw(0)

then

w(s) < −
(

1 + cd

u∗

)
1 + k1

β1
(u(s) − 1) for s > 0 (2.12)

and

z(s) < dw(s) for s > 0 (2.13)

as long as w(s) > 0 and u∗ < u(s) < 1 for s > 0.

Proof. We prove by contradiction. Suppose the above statement does not hold. Then only
two cases can occur.

Case I. There is s1 > 0 such that (2.12) and (2.13) are valid for 0 < s < s1, and

w(s1) = −
(

1 + cd

u∗

)
1 + k1

β1
(u(s1) − 1) , (2.14)

z(s1) ≤ dw(s1). (2.15)
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Hence, we have

ẇ(s1) +
(

1 + cd

u∗

) (
1 + k1

β1

)
u̇(s1) > 0, (2.16)

that is,

z(s1) +
(

1 + cd

u∗

)(
1 + k1

β1

)
1

c
u(s1)

(
1 − u(s1) − β1w(s1)

u(s1) + k1

)
> 0.

By (2.15), we have
[

d − 1

c

(
1 + cd

u∗

) (
1 + k1

β1

)
β1u(s1)

u(s1) + k1

]
w(s1)

+
(

1 + cd

u∗

) (
1 + k1

β1

)
1

c
u(s1)(1 − u(s1)) > 0,

which together with (2.14) leads to
{[

d −
(

1 + cd

u∗

)
u(s1)

c

](
1 + cd

u∗

) (
1 + k1

β1

)

+
(

1 + cd

u∗

) (
1 + k1

β1

)
1

c
u(s1)

}
(1 − u(s1)) > 0.

Hence

d −
(

1 + cd

u∗

)
u(s1)

c
+ u(s1)

c
> 0,

which is a contradiction since u(s1) > u∗. Therefore, Case I can not occur.

Case II. There exists s1 such that (2.12) and (2.13) are valid for 0 < s < s1, and

w(s1) ≤ −
(

1 + cd

u∗

) (
1 + k1

β1

)
(u(s1) − 1) (2.17)

and

z(s1) = dw(s1). (2.18)

Then we have

ż(s1) − dẇ(s1) > 0 ⇒ cz(s1) − αw(s1)

(
1 − β2w(s1)

u(s1) + k2

)
− dz(s1) > 0.

(2.19)

By (2.18), it is easy to see that

(cd − d2)w(s1) − αw(s1)

(
1 − β2w(s1)

u(s1) + k2

)
> 0.
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Since w(s1) > 0,

(cd − d2) + αβ2

u(s1) + k2
w(s1) > 0.

By (2.17), we obtain

(
1 + A

u∗

)
cd − d2 + A = (cd − d2) + αβ2

k2

(
1 + cd

u∗

) (
1 + k1

β1

)
> 0,

and hence, d ∈ (
0,

c(1+ A
u∗ )+

√
(1+ A

u∗ )2c2+4A

2

)
, which is a contradiction. Therefore, Case II

can not occur.
Summarizing the above discussion, we know that (2.12) and (2.13) are valid for all

s > 0. The proof is complete. �

Lemma 2.5. In a sufficiently small neighborhood of (1, 0, 0), the two-dimensional unstable
manifold U2 intersects the plane, which is defined by z = 0 in a smooth C1 curve �.

The proof is similar with that of [5, Lemma 5], which we omit here.

Lemma 2.6. A solution of (2.1) on U1 would exit W and enter the region P.

Proof. Lemmas 2.2–2.4 show that a solution of system (2.1) on the strongly unstable
manifold U1 is contained in the set

C =
{
(u, w, z) ∈ D

∣∣ u∗ < u < 1,−
(

1 + c2

2

)
1 + k1

β1
(u − 1)

≤ w < −
(

1 + cd

u∗

)
1 + k1

β1
(u − 1), c

2w < z < dw

}
,

where d >
c(1+ A

u∗ )+
√

(1+ A
u∗ )2c2+4A

2 . Since u(s) < 1, we have

w(s) ≥ −
(

1 + c2

2

)
1 + k1

β1
(u(s) − 1) >

u(s) + k1

β1
(1 − u(s))

⇒ 1 − u(s) − β1w(s)

u(s) + k1
< 0 ⇒ u′(s) < 0.

Thus for a solution of system (2.1), u(s) decreases until u(s1) = u∗ for some finite s1.
The trajectory of this solution therefore hits ∂W on the face u = u∗, w > w∗, z > 0, (2.1)
shows that it will leave W at some finite time by the common boundary of W and P, and
enters the region P. �

Lemma 2.7. A trajectory of system (2.1) passing through a point of � in the region where
u < 1 would leave W at some finite time and then enter the region Q.
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Proof. We know that a point (u, w, z) with z = 0 is on curve �. Thus, the third element
in (2.8) can be approximated to the first order by n = −λ3m

λ2
. Recall that the portion of

interest of the curve � is in the region where u < 1, then there is

−m
β1

(1 + k1)(cλ3 + 1)
− n

β1

(1 + k1)(cλ2 + 1)
< 0.

It follows that m < 0, hence m + n > 0, which together with (2.8) implies that the w

component of points along the curve � will satisfy w > 0. From the direction of the vector
field on the quarter to plane by u∗ < u, w > 0, z > 0, any trajectory passing through a
point of � would immediately enter the region Q. The proof is complete. �

We define
∑

in the following way. First, we choose a sufficiently small circle around
(1, 0, 0) on the two-dimensional unstable manifold U2, and it satisfies the following:

(i) The circle is small enough that the intersection point of the circle and the one-
dimensional strongly unstable manifold U1 is close enough to the eigenvector χ3 to satisfy
Lemmas 2.2–2.4.
(ii) The circle is contained in the neighborhood of (1, 0, 0) given in Lemma 2.5, then it
intersects with the curve �.

Hence,
∑

is defined to be the arc of this circle contained on the octant 	1 whose
endpoints are the intersections of the circle with U1 and curve �.

Now we can apply Proposition 2.1 to find a trajectory in phase space which does not
enter the region P or Q. Such a result is presented in Lemma 2.8.

Lemma 2.8. There is a y0 ∈ ∑
such that the solution y(s; y0) of system (2.1) remains in

W for all s; i.e.,
∑ �= ∑0.

Proof. We first prove set W is a Wazewski set. Since W is a closed set, then statement
(1) in Proposition 2.1 is valid. Suppose y0 ∈ ∑

, s < T (y0), y(s, y0) ∈ W\W−. Then
y(s, y0) ∈ int W ∪ J. To verify statement (2) in Proposition 2.1, we only need to prove the
following claim.

Claim. y(s, y0) /∈ J = {(u, w, z)|u ≥ u∗, w < 0, z = 0} ∪ {(u, w, z)|u ≥ u∗, w = 0, z =
0}.

Suppose the above claim is not true, then two cases can occur.

Case I. There is s1 < T (y0) such that y(s1, y0) ∈ {(u, w, z)|u ≥ u∗, w < 0, z = 0}. From
the calculation of the vector field, we have u′(s1) > 0, z′(s1) > 0. If u(s1) > u∗, there
exists a sufficiently small δ such that y(s1 −δ, y0) lies in region Q, which is a contradiction
to s1 < T (y0). If u(s1) = u∗, then either u(s) < u∗ for all s < s1, or there is s′

1 < s1
such that u(s′

1) = u∗ and u(s) < u∗ for s′
1 < s < s1. The fact that u(s) < u∗ for all

s < s1, leads to a contradiction that y0 /∈ �. Then s′
1 must exist. But we can find δ small

enough such that y(s′
1 + δ, y0) stays in region P no matter whether z(s′

1) > 0 from the
calculation of the vector field, which is also a contradiction to s1 < T (y0). That means
this case cannot occur.

Case II. There is s1 such that y(s1, y0) ∈ {(u, w, z)|u ≥ u∗, w = 0, z = 0}. Since
{(u, w, z)|u ≥ u∗, w = 0, z = 0} is an invariant set, no y0 ∈ ∑

is valid but y0 belongs
to the stable manifold corresponding to the eigenvalue λ1 < 0, which is a contradiction.
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Thus this case cannot occur either. It follows that statement (2) in Proposition 2.1 holds
true and hence, W is a Wazewski set.

Now we are in a position to verify statement (3) in Proposition 2.1. Obviously, the arc∑
is compact and it has only one intersection with a trajectory of system (2.1). Lemmas

2.2–2.7 show that the image of one endpoint of
∑

lies in the component ∂P\{(u∗, w∗, 0)}
of W−, and the image of the other endpoint is in the component ∂Q\{J ⋃

(u∗, w∗, 0)} of
W−. If

∑ = ∑0, then F would be a homeomorphism of the connected set
∑

to its image
in the disconnected set W−. Therefore,

∑ �= ∑0 and the lemma is proved. �

Moreover, the next lemma shows us that y(s; y0) ∈ D ⊂ W. For convenience, let
ỹ(s) denote the solution y(s; y0), and the coordinate functions be ũ(s), w̃(s) and z̃(s).
Therefore, y0 = ỹ(0) = (ũ(0), w̃(0), z̃(0))T .

Lemma 2.9. The solution ỹ(s) stays in the region

D = {(u, w, z) ∈ D | 0 < u < 1, 0 < w < l1(u), l2(w) < z < l3(w)},
where

l1(u) =

⎧⎪⎪⎨
⎪⎪⎩

−
(

1 + cd

u∗

) (
1 + k1

β1

)
(u − 1) u∗ < u ≤ 1,

−
(

1 + cd

u∗

) (
1 + k1

β1

)
(u∗ − 1) 0 ≤ u ≤ u∗,

l2(w) = − Ā

c
w with Ā >

αβ2

k2

(
1 + cd

u∗

) (
1 + k1

β1

)
,

l3(w) = dw,

where d satisfies the condition in Lemma 2.4.

Proof. Since the plane defined by u = 0 is an invariant manifold, then the coordinate ũ(s)
of ỹ(s) is strictly positive for all s since ũ(0) > 0.

We claim that the second coordinate of ỹ, w̃ is also positive. Suppose, by contradiction,
ỹ(s) enters the region N = {(u, w, z)|w < 0}. Let s1 = inf{s|ỹ(s) ∈ N }. Then w̃(s1) = 0.
The vector field on the plane defined by w = 0 shows that w̃′(s1) = z̃(s1) ≤ 0. The u-axis
is an invariant manifold, so z̃(s1) < 0, and we obtain ũ(s1) < u∗. Otherwise, ỹ(s1) ∈ Q,
which is a contradiction. Therefore, we have ũ(s1) < u∗. Then only two cases can occur.

Case I. w̃(s) < 0 for all s > s1. We show that z̃(s) < 0 for all s > s1. If not, we suppose
that there is ŝ > s1 and small δ > 0 such that z̃(ŝ) = 0, z̃(ŝ + δ) > 0, hence z̃′(s) > 0
for s ≥ ŝ. It follows that w̃′(s) > z̃(ŝ) > 0 for s > ŝ, then we have w̃(s) > 0 at some
finite time, which is a contradiction. Thus z̃(s) < 0 is valid for all s > s1. By the first
equation of (2.1) and ũ(s1) < u∗, we have ũ′(s) ≥ 1

c min[ũ(s1)(1 − ũ(s1)), u∗(1 − u∗)]
for s > s1. Then ũ(s1) increases to u∗ at finite time, say ũ(s2) = u∗. Together with
w̃(s2) < 0, z̃(s2) < 0, the vector field shows that ỹ(s) enters Q. This is impossible.

Case II. There is s̄ > s1 such that w̃(s) < 0 for s1 < s < s̄ and w̃(s̄) = 0. Obviously,
w̃′(s̄) = z̃(s̄) ≥ 0, similar to the above discussion. The invariance of u-axis leads to
w̃′(s̄) = z̃(s̄) > 0. Hence there is δ > 0 such that z̃(s̄ + δ) > c

2 w̃(s̄ + δ) > 0. By Lemma
2.2, we have z̃(s) > c

2 w̃(s) and w̃(s) > 0 for all s > s̄ + δ. Now the vector field shows
that the trajectory would enter region P, which is not impossible either.
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Summarizing Cases I and II, we conclude that w̃(s) > 0 at all times. Next we prove
z̃(s) > l2(w̃)(s) for all s. If not, suppose there is s3 such that z̃(s3) ≤ − Ā

c w̃(s3) < 0. If

there is an s4 > s3 such that z̃(s4) = − Ā
c w̃(s4), then z̃′(s4) + Ā

c w̃′(s4) ≥ 0. Hence for

s = s4, we have 0 < w̃ < l1(ũ), 1−ũ
ũ+k2

≤ 1
k2

, and obtain

cz̃ − αw̃

(
1 − β2w̃

ũ + k2

)
+ Ā

c
z̃ ≥ 0

⇒ − Āw̃ − αw̃

(
1 − β2w̃

ũ + k2

)
− Ā2

c2 w̃ ≥ 0

⇒ −α − Ā2

c2 ≥ Ā − αβ2w̃

ũ + k2
> Ā − αβ2l1(ũ)

ũ + k2

≥ Ā − αβ2

k2

(
1 + cd

u∗

)(
1 + k1

β1

)
> 0,

which is impossible. So if z̃(s3) < − Ā
c w̃(s3), then z̃(s) < − Ā

c w̃(s) for all s > s3.
Furthermore, if

z̃′(s) = cz̃(s) − αw̃(s)

(
1 − β2w̃(s)

ũ(s) + k2

)

<

(
− Ā + αβ2

k2

(
1 + cd

u∗

)
1 + k1

β1

)
w̃(s) − αw̃(s) < −αw̃(s) < 0,

it yields that z̃(s) < z̃(s3) < 0 for s > s3. It then follows that w̃′(s) < z̃(s3) < 0 for s > s3,
so w̃(s) < 0 for some finite s, again a contradiction. Therefore, one has z̃(s) > l2(w̃)(s)
for all s.

Note that a trajectory starting on
∑

converges to (1, 0, 0) tangent to χ2 or χ3. Points on
χ2 or χ3 have z = λ2w or z = λ3w. Since λ2, λ3 < d, Lemma 2.4 shows that z̃(s) < dw̃(s)
for all s. The proof is complete. �

The remaining work is to construct a V function to apply the Invariance Principle to
show that ỹ(s) → (u∗, w∗, 0). We define

V (u, w, z) = cα

β1

[
u − u∗+(k1 − k2−u∗+ k1u∗

k2
) ln

u+k2

u∗+k2
− k1u∗

k2
ln

u

u∗

]

+ [
c(w − w∗) − z

] + w∗ [ z

w
− c ln

( w

w∗
)]

.

Calculating dV
dt along the solution of (2.1), we have

dV

dt
= cα

β1

[
(u − u∗)(u + k1)

u(u + k2)

]
du

dt
+

(
c − w∗

w2 z − cw∗

w

)
dw

dt
−

(
1 − w∗

w

)
dz

dt
.

that is,

dV

dt
= α

β1

[
(u − u∗)(u + k1)

(u + k2)

] (
1 − u − β1w

u + k1

)
− w∗

w2 z2

+α

(
1 − β2w

u + k2

) (
w − w∗) .
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Note that

1 − u − β1w

u + k1
= 1 − u − β1w

u + k1
−

(
1 − u∗ − β1w

∗

u∗ + k1

)

= −(u − u∗) −
(

β1w

u + k1
− β1w

∗

u∗ + k1

)

= −(u − u∗) −
(

β1w

u + k1
− β1w

∗

u + k1
+ β1w

∗

u + k1
− β1w

∗

u∗ + k1

)

= −(u − u∗) − β1

u + k1
(w − w∗) + β1w

∗(u − u∗)
(u∗ + k1)(u + k1)

= −(u − u∗) − β1

u + k1
(w − w∗) + u − u∗

u + k1
(1 − u∗)

and

1 − β2w

u + k2
= −β2

u + k2
(w − w∗) + u − u∗

u + k2
.

If k1 > 1 − u∗, we have

dV

dt
≤ − α

β1

u + k1 − 1 + u∗

u + k2
(u − u∗)2 − αβ2

u + k2
(w − w∗)2 − w∗

w
z2 ≤ 0.

Note that V̇ = 0 if and only if (u, w, z) is the equilibrium point (u∗, w∗, 0). The Invariant
Principle implies that ỹ(s) → (u∗, w∗, 0) as s → +∞. Let

A1 = −
(

1 − 2u∗ − β1w
∗k1

(u∗ + k1)2

)
, A2 = β1u∗

(u∗ + k1)
.

If k1 > 1 − u∗, then

1 − 2u∗ − β1w
∗k1

(u∗ + k1)2 = (1 − u∗)
(

1 − k1

u∗ + k1

)
− u∗

=
(

1 − u∗

u∗ + k1
− 1

)
u∗ = u∗

u∗ + k1
(1 − 2u∗ − k1) < 0,

which implies

A1 > 0, A2 > 0. (2.20)

Evaluating the Jacobian matrix of the right side of system (2.1) at (u∗, w∗, 0), we obtain

J (u∗, w∗, 0) =

⎛
⎜⎜⎜⎝

1

c

[
1 − 2u∗ − β1w

∗k1

(u∗ + k1)2

]
−1

c

(
β1u∗

u∗ + k1

)
0

0 0 1

− α

β2
α c

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

− A1

c
− A2

c
0

0 0 1

− α

β2
α c

⎞
⎟⎟⎟⎠ ,

and the corresponding characteristic polynomial is

P(λ) =
(

λ + A1

c

)
(cλ + α − λ2) + αA2

cβ2
.
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We are interested in the eigenvalues of P(λ) = 0, and study them by delicate analysis.
Let λ → +∞, then P(λ) → −∞. By the graph of P(λ), we know P(λ) = 0 has a

positive root λ′, which satisfies

λ′ ≥ c + √
c2 + 4α

2
> c. (2.21)

Now we can rewrite P(λ) as

P(λ) = (λ − λ′)(a + bλ − λ2),

where a, b are undetermined. Since

(λ − λ′)(a + bλ − λ2) = (λ + A1

c
)(cλ + α − λ2) + αA2

cβ2
,

it follows that

b + λ′ = − A1

c
+ c,

aλ′ = − A1

c
α − αA2

cβ2
.

By virtue of (2.20) and (2.21), we have a < 0, b < 0. Noticing that the other two roots of
P(λ) = 0 are determined by

λ2 − bλ − a = 0, (2.22)

it is easy to obtain that Re λ = b
2 < 0, hence P(λ) = 0 has three eigenvalues, one

is positive and the other two with negative real parts. Hence there is a two-dimensional
stable manifold and a one-dimensional unstable manifold at (u∗, w∗, 0). By (2.22), we can
find a critical α∗ = α∗(u∗, c) such that if α > α∗, there is a complex conjugate pair of
eigenvalues with negative real part; if α < α∗, there are two distinct negative eigenvalues;
if α = α∗, there is a repeated negative real value. Therefore, if α ≤ α∗, solutions of
system (2.1) on the stable manifold approach (u∗, w∗, 0) monotonously. If α > α∗, the
solution on the stable manifold will spiral in towards (u∗, w∗, 0) with damped oscillations.
Furthermore, by direct computation, we have

α∗ = λ′(− A1
c + c − λ′)2

4
(

A1
c + A2

cβ2

) ≥ A2
1

4
(

A1 + A2
β2

) .

Summarizing the above discussion, Theorem 2.2 is true for c >
√

4α. The existence of
such traveling wave solutions for c = √

4α can be proved in a similar way to that in [5],
where the limit argument was applied. We omit it here. Thus the proof of Theorem 2.2 is
complete.

3. Discussion

We consider a diffusive predator-prey model with modified Leslie–Gower and Holling-II
schemes with D = 0. The stability of the four equilibria of system (1.2) was discussed
by Tian [16]. The boundary equilibrium (1, 0) is unstable and the positive equilibrium
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Figure 1. Traveling wave solution of system (1.2).

(u∗, w∗) is stable under some assumptions. Biologically, we concentrate on the case of
such traveling wave connecting (1, 0) to (u∗, w∗), which describes the invasion of the
predators. We use the ‘shooting method’ to show the existence of a nonnegative traveling
wave solution, and prove the non-existence by the ‘eigenvalue method’.

Now we present some simulation results for the main results in section 2. By Theorem
2.2, system (1.2) admits a nonnegative traveling wave connecting (1, 0) to (u∗, w∗). Let
k1 = 1, β1 = 1, α = 1, k2 = 1, β2 = 2, c = 2.1 > c∗(= 2). It is easy to check that
the conditions in Theorem 2.2 are valid under the above parameters. The evolution of the
solutions is shown in figure 1. We do not show the case where c = c∗ = 2 as the graphs
are quite similiar.

A particular interesting question that is left open here but could be approached with the
techniques by Dunbar [6], is to explore the case where D > 0. In [6], Dunbar studied
diffusive Lotka–Volterra equations with D > 0, and found out a heteroclinic connection
between (1, 0) with (u∗, w∗) by using the shooting method in R4. However, the analysis
could become more complicated in R4, compared with that in R3 shown here.

We only investigate the traveling wave connecting (1, 0) to (u∗, w∗) in our present study.
However, the traveling wave connecting other equilibria are also worthy to be considered
because of their important insights in ecological balance. For example, such traveling
wave connecting (1, 0) to (0, k2

β2
) describes a scenario that introducing predator into the

system could drive prey to extinction. Currently, the commonly used technique to explore
the traveling wave in a non-monotone system includes the shooting arguments, iterative
method [8,9,15,20] and perturbation analysis [1,12]. The effective approach to solve the
existence and non-existence of the traveling wave with a general connection between
different equilibria of system (1.2) still remain wide open.

Acknowledgements

This research is supported by the National Natural Science Foundations of China
(11401096) and the Natural Science Foundation of Guangdong Province (2016A0303134-
26), Funds of Guangdong Provincial Engineering Technology Research Center for Data
Science (2016KF05) and the research fund of Foshan University.



35 Page 18 of 18 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:35

References

[1] Ai S, Chow S N and Yi Y, Traveling wave solutions in a tissue interaction model for skin pattern
formation, J. Dyn. Differ. Equ., 15(2–3) (2003) 517–534 (Special Issue dedicated to Victor A.
Pliss on the occasion of his 70th birthday)

[2] Al-Omari J and Gourley S A, Monotone travelling fronts in an age-strctured reaction-diffusion
model for a single species, Proc. R. Soc. Edinb., 132A (2002) 75–89

[3] Diekman O, Thresholds and traveling waves for the geographical spread of infecion, J. Math.
Biol., 6 (1978) 109–130

[4] Dunbar S R, Travelling wave solutions of diffusive Volterra–Lotka intersection equations,
Ph.D. thesis (1981) (University of Minnesota)

[5] Dunbar S R, Travelling wave solutions of diffusive Volterra–Lotka equations, J. Math. Biol.,
17 (1983) 11–32

[6] Dunbar S R, Traveling wave solutions of diffusive Lokta–Volterra equation: a heteroclinic
connection in R4, Trans. Am. Math. Soc., 286 (1984) 557–594

[7] Hartman P, Ordinary differential equations (1982) (Boston: Birkhäuser)
[8] Lui R, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,

Math. Biosci., 93 (1989) 269–295
[9] Lui R, Biological growth and spread modeled by systems of recursions. II. Biological theory,

Math. Biosci., 93 (1989) 297–331
[10] Murray J D, Mathematical biology, I & II (2002) (New York: Springer)
[11] Nindjin A F, Aziz-Alaoui M A and Cadivel M, Analysis of a predator–prey model with modified

Leslie–Gower and Holling-type II schemes with time delay, Nonlinear Anal. Real World Appl.,
7 (2006) 1104–1118

[12] Ou C H and Wu J H, Persistence of wavefronts in delayed nonlocal reaction-diffusion equations,
J. Differ. Equ., 235 (2007) 219–261

[13] Ruan S and Xiao D, Stability of steady states and existence of traveling waves in a vector
disease model, Proc. R. Soc. Edinb., 134A (2004) 991–1011

[14] Schaaf K W, Asymptotic behavior and traveling wave solutions for parabolic functional dif-
ferential equations, Trans. Am. Math. Soc., 302 (1987) 587–615

[15] Tian Y L and Weng P X, Asymptotic behaviors and traveling wave front for parabolic functional
differential equations with spatial–temporal delays, Nonlinear Anal., 71 (2009) 3347–3388

[16] Tian Y L and Weng P X, Stability analysis of diffusive predator-prey model with modified
Lesile–Gower and Holling-type II schemes, Acta Appl. Math., 114 (2011) 173–192

[17] Volpert A I, Vitaly V A and Vladimir V A, Traveling wave solutions of parabolic systems,
Translation of Mathematical Monographs, 140 (1994) (American Mathematical Society)

[18] Weinberger H F, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13
(1982) 353–396

[19] Weng P X and Wu J H, Wavefronts for a nonlocal reaction–diffusion population model with
general distributive maturity, IMA J. Appl. Math., 73 (2008) 477–495

[20] Wu J H and Zou X F, Traveling wave fronts of reaction–diffusion systems with delay, J. Dyn.
Differ. Equ., 13 (2001) 651–687

[21] Zhao X Q and Xiao D-M, The asymptotic speed of spread and traveling waves for a vector
disease model, J. Dyn. Differ. Equ., 18 (2006) 1001–1019

Communicating Editor: Mythily Ramaswamy


	Traveling wave solutions of a diffusive predator–prey model with modified Leslie–Gower and Holling-type II schemes
	1.  Introduction
	2.  Traveling wave solutions with D=0
	2.1.  A variant of Wazewski's theorem and a Wazewski set
	2.2.  The traveling wave solution
	2.3.  Proof of Theorem 2.2

	3.  Discussion
	Acknowledgements
	References




