期刊论文详细信息
Сибирский математический журнал
Contribution to the General Linear Conjugation Problem for A Piecewise Analytic Vector
S. N. Kiyasov1 
[1] Kazan (Volga Region) Federal University
关键词: matrix function;    linear conjugation problem;    factorization;   
DOI  :  10.1134/S003744661802012X
学科分类:数学(综合)
来源: Izdatel stvo Instituta Matematiki Rossiiskoi Akademii Nauk
PDF
【 摘 要 】

Establishing an analogy between the theories of Riemann–Hilbert vector problem and linear ODEs, for the n-dimensional homogeneous linear conjugation problem on a simple smooth closed contour Γ partitioning the complex plane into two domains D+ and D− we show that if we know n−1 particular solutions such that the determinant of the size n−1 matrix of their components omitting those with index k is nonvanishing on D+ ∪ Γ and the determinant of the matrix of their components omitting those with index j is nonvanishing on Γ ∪ D− {∞}, where \(k,j = \overline {1,n} \), then the canonical system of solutions to the linear conjugation problem can be constructed in closed form.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO201910251529171ZK.pdf 130KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:9次