Cellular Physiology and Biochemistry | |
Voltage-Gated Na+ Channels are Modulated by Glucose and Involved in Regulating Cellular Insulin Content of INS-1 Cells | |
Chong Chen1  | |
关键词: Glucose; Voltage-gated Na+ channel; INS-1 cells; Tetrodotoxin; Insulin; | |
DOI : 10.1159/000486921 | |
学科分类:分子生物学,细胞生物学和基因 | |
来源: S Karger AG | |
【 摘 要 】
Background/Aims Islet beta cells (β-cells) are unique cells that play a critical role in glucose homeostasis by secreting insulin in response to increased glucose levels. Voltage-gated ion channels in β-cells, such as K+ and Ca2+ channels, contribute to insulin secretion. The response of voltage-gated Na+ channels (VGSCs) in β-cells to the changes in glucose levels remains unknown. This work aims to determine the role of extracellular glucose on the regulation of VGSC. Methods The effect of glucose on VGSC currents (INa) was investigated in insulin-secreting β-cell line (INS-1) cells of rats using whole-cell patch clamp techniques, and the effects of glucose on insulin content and cell viability were determined using Enzyme-Linked Immunosorbent Assay (ELISA) and Methylthiazolyldiphenyl-tetrazolium Bromide (MTT) assay methods respectively. Results Our results show that extracellular glucose application can inhibit the peak of INa in a concentration-dependent manner. Glucose concentration of 18 mM reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, and prolonged the time course of INa recovery from inactivation. Glucose also enhanced the activity-dependent attenuation of INa and reduced the fraction of activated channels. Furthermore, 18 mM glucose or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited the activity of VGSC and also improved insulin synthesis. Conclusion These results revealed that extracellular glucose application enhances the insulin synthesis in INS-1 cells and the mechanism through the partial inhibition on INa channel is involved. Our results innovatively suggest that VGSC plays a vital role in modulating glucose homeostasis.
【 授权许可】
CC BY-NC-ND
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910250253171ZK.pdf | 1170KB | download |