Czechoslovak Mathematical Journal | |
Non supercyclic subsets of linear isometries on Banach spaces of analytic functions | |
Abbas Moradi1  | |
[1] Karim Hedayatian,Bahram Khani Robati,Mohammad Ansari, Department of Mathematics, College of Sciences, Shiraz University, Shiraz, intersection Adabiyat 71467-13565, Iran | |
关键词: supercyclicity; hypercyclic operator; semigroup; isometry; | |
DOI : | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
Let $X$ be a Banach space of analytic functions on the open unit disk and $\Gamma$ a subset of linear isometries on $X$. Sufficient conditions are given for non-supercyclicity of $\Gamma$. In particular, we show that the semigroup of linear isometries on the spaces $S^p$ ($p>1$), the little Bloch space, and the group of surjective linear isometries on the big Bloch space are not supercyclic. Also, we observe that the groups of all surjective linear isometries on the Hardy space $H^p$ or the Bergman space $L^p_a$ ($1
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910188360003ZK.pdf | 148KB | download |