期刊论文详细信息
Czechoslovak Mathematical Journal
Pointwise convergence to the initial data for nonlocal dyadic diffusions
Marcelo Actis, Hugo Aimar1 
关键词: pointwise convergence;    nonlocal diffusion;    dyadic fractional derivatives;    Haar base;   
DOI  :  
学科分类:数学(综合)
来源: Akademie Ved Ceske Republiky
PDF
【 摘 要 】

We solve the initial value problem for the diffusion induced by dyadic fractional derivative $s$ in $\mathbb R^+$. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying "heat kernel". We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO201910187951800ZK.pdf 144KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:7次