Czechoslovak Mathematical Journal | |
Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains | |
Mehmet Çelik, Yunus E. Zeytuncu1  | |
关键词: canonical solution operator for $\overline{\partial}$-problem; Hankel operator; Hilbert-Schmidt operator; | |
DOI : 10.21136/CMJ.2017.0471-15 | |
学科分类:数学(综合) | |
来源: Akademie Ved Ceske Republiky | |
【 摘 要 】
On complete pseudoconvex Reinhardt domains in $\mathbb{C}^2$, we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in $\mathbb{C}^2$ that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator $H_{\bar{z}_1 \bar{z}_2}$ is Hilbert-Schmidt.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201910186030483ZK.pdf | 149KB | download |